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Multilayered detectors

need complex data reconstruction.
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tracks and hits particles 

https://jpata.web.cern.ch/jpata/mlpf/visualizations/tracks_and_hits.html
https://jpata.web.cern.ch/jpata/mlpf/visualizations/particles.html
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We have created a new open dataset with Key4HEP and Geant4

calo/tracker hits, tracks and calo clusters, baseline & target particles

~300-500 / event

~100-300 / event

~10k / event
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MLPF(tracks and clusters) → particles
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let’s focus on 
this first
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Extensive hyperparameter tuning and model comparison…

Better-than-SOTA result!

hypertuning

fast transformer
fast GNN
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almost 50% improvement in jet response width over the baseline

In samples never used in training…

MLPF

baseline
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a consistent improvement over the full pT spectrum 

In samples never used in training…

MLPF

baseline
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baseline PF

MLPF

JP, Javier Duarte, Farouk Mokhtar, Eric Wulff, Jieun Yoo, Jean-Roch Vlimant, Maurizio Pierini, Maria Girone. 
Machine Learning for Particle Flow Reconstruction at CMS. ACAT 2021. https://doi.org/10.48550/
arXiv.2203.00330, http://cds.cern.ch/record/2792320 

Also tested in a real detector (2022), now in the process of updating

https://doi.org/10.48550/arXiv.2203.00330
https://doi.org/10.48550/arXiv.2203.00330
http://cds.cern.ch/record/2792320
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Baseline (untuned) algo runs only on CPU, scales 
~quadratically, runtime per event is in seconds.
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ML model scales linearly, runs in milliseconds
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Portable on CPU, nVidia & AMD GPU, Intel Habana Gaudi chips

three different HPC sites
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what I showed so far
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work in progress
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CLIC in EDM4HEP, ~2.6TB

• full stats, full details

• 5 physics samples, ~1M events each

• 7 gun samples, ~100k events each

tracks & clusters, ML format, ~50GB

• full stats, coarse events


• genparticles

• tracks and calorimeter clusters

• PF candidates


• ML-friendly TFDS format

tracks & calo hits, ML format, ~5GB

• reduced stats, granular events


• genparticles

• tracks and calorimeter hits

• PF candidates


• ML-friendly TFDS format

• https://doi.org/10.5281/zenodo.8260741

• https://doi.org/10.5281/zenodo.8414225

• https://doi.org/10.5281/zenodo.8409592 

Open datasets!
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https://doi.org/10.5281/zenodo.8260741
https://doi.org/10.5281/zenodo.8409592
https://doi.org/10.5281/zenodo.8414225
https://doi.org/10.5281/zenodo.8260741
https://doi.org/10.5281/zenodo.8414225
https://doi.org/10.5281/zenodo.8409592


Summary
• Particle flow reconstruction is a complex and interesting 

problem to address with end-to-end ML


• ML can improve jet/MET response significantly over a naive 
baseline 


• Scalable ML models allow processing of full events with high 
throughput and portability


• Open datasets & code can accelerate research


• More granular events, updates & integration tests with a real 
detector on the way
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Backup
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Clustering to reconstruction

19

Clustering (graph building) is an internal detail, not a model 
target. Particle reconstruction is the real goal!
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particles
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decay 
products

detector hits

clusters of 
hits

Simulation 
model

Reconstruction 
model
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One layer of learnable graph building with locality sensitive hashing and message passing
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Random 
projections

Learnable 
weights

WQ,K,V ∈ ℝF×D C ∈ ℝD×M

Q′ ∈ ℝN×M K′ T ∈ ℝM×NQ, K, V ∈ ℝN×D V ∈ ℝN×DX ∈ ℝN×F

Input  
feature vectors

Queries, keys, 
values

××

Transformed 
feature vectors

=

%(NMD)%(NMD)

K′ TV ∈ ℝM×D X′ = Q′ (K′ TV) ∈ ℝN×D

One layer of kernel-based self attention with the FAVOR mechanism.
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