The Interplay of Machine Learning-based Resonant Anomaly Detection Methods

Radha Mastandrea

In collaboration with T. Golling, G. Kasieczka, C. Krause, B. Nachman, J. A. Raine, D. Sengupta, D. Shih, and M. Sommerhalder

ML4Jets 2023

08/11/2023

Resonant anomaly detection as a search strategy

Many* ML techniques can construct the SM Template

Many* ML techniques can construct the SM Template

Study 0: do the methods reproduce the expected marginals?

Study 1: are the samples good proxies for SM background?

Study 2: do the samples agree on "anomalous" background?

Study 3: do the samples agree on signal?

Combination appears to stabilize and improve performance...

...across a range of signal efficiencies

Closing thoughts

- The LHC Olympics dataset has been almost exclusively used for resonant AD.
 We should be testing on a variety of signal models!
- SALAD appears* to beat the combined methods, but reweighting needs regions of overlapping support.
 - What signals could break individual methods?
 - Would the combination of samples still perform well on these models?
 - Note that sample combination can be **weighted** (though not explored here).

Backup slides

Number of generated samples

Method	Training data	Validation data	# samples	Oversampling
SALAD	793k SIM, 696k DAT	198K SIM, 174K DAT	1,045k	N/A
CATHODE	696k DAT	174K DAT	400k	3
CURTAINS	373k DAT	93k DAT	1,887k	4
FETA	793k SIM, 696k DAT	198K SIM, 174K DAT	732k	6

Background overlaps do not agree when there is signal

SIC at rejection = 1000

Classifier SIC for $n_{sig} = 750$

Classifier rejection for $n_{sig} = 750$

Around $n_{sig} = 500$, the AD task breaks down

Correlations of scores: background only

Correlations of scores: $n_{sig} = 1500$

