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Analysis pipeline at the LHC

Lots of (also ML) components in our analysis pipeline

But each optimized separately and downstream components are

optimized based on the steps prior to it
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Analysis pipeline at the LHC

e.g. b-tagging can only be optimized after tracking, but we rarely re-
optimize tracking for b-tagging

We optimize the parameters of the reconstruction and then freeze them
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Analysis pipeline at the LHC

The optimization of the sensitivity is primarily the job of the analysis,
given a fixed reconstruction - mostly common for all analysis
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End-to-end Deep Learning

ML and HEP setups are fortunately very aligned

Also often split in two parts, but key difference is that backbone can be
fine-tuned w/ gradient descent

Pre-trained and then fine-tuned on head task
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Q: Could this worktlow also work in HEP?

* fine-tuning is now standard in large-scale ML - introduced in HEP with e.g. neos and inferno

[ https:/arxiv.org/abs/2203.05570 ] [ https:/arxiv.org/abs/1806.04743 ]
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A toy end-to-end Analysis
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Setup: CMS open data and ParT

[ http:/opendata.cern.ch/record/12102 ]

Jets are clustered using the anti-
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Constituents features: —
* up to 100 PF per jet Particle transformer for FTAG [arXiv:2202.03772]

+ 17 features per PF Training: QCD vs Higgs jets

High-level features:
* Jet 4-momenta 10M events / 22M jets

 Xbb scores from ParT

( SoftMax )


http://opendata.cern.ch/record/12102

Backbone Jet representation

Analysis would typically

use Xbb + HL features
ParT comes up with its v

own Internal Features
representation (128 dim) ||
when learning about jet
flavour
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Q: Do high-dim - U
embeddings hold more P —
(useful) info than | Scalar + HL J/
Xbb-+HL features? o



Analysis head

The head is trained for S/B discrimination with Jet representations
from backbone as inputs

Variable number of jets per event + Permutation Invariance -> DeepSets
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Q: Does fine-tuning the jet
representation help?




I'rozen training

ParT backbone trained on Xbb task and then frozen

DeepSets + binary classification trained on S/B
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Fine-tuned training

Par'T backbone pre-trained on Xbb task
Then fine-tuning on S/B
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FFrom scratch training

No backbone pre-training

Backbone + head trained from scratch on S/B
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‘Trainings in summary

Structural Autonomy

Architecture _ — — ’
\ ' ( Vector
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Q: Could we just train from scratch? Does pre-training matter?

[ Frozen 'l Standard HEP

Q: Is fine-tuning as in modern ML worth it?

Q: Do we see benefits of scale & adjacent pre-training tasks?
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Results

Large data-
efficiency
95.0% signal efficiency gains!
Well-known patterns from ML
seem to hold also in HEP 102-
* Fine-tuning for Analysis extracts &
more info than just pre-trained E
features 210
* Fine-tuning workflow helps in
both performance & data o
efficiency (10-100x wrt standard 103 ! TS
hep) 55 W
* Higher-dim embeddings also 3l - e
g g g’ -/

seem to be useful 100 100 108 105 107
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Results

Large data-
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95.0% signal efficiency gains!
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Background rejection

Bkg rejection

Bkg rejeCtionScaIar + Hl frozen
-
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From scratch training also works, it’s just slow

95.0% signal efficiency
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Conclusions

Fine-tuning workflow for end to end analysis works and is useful
even for simple examples

e Gains in both data efficiency & performance wrt standard HEP
* 2x in background rejection
* 10-100X in data efficiency

* There might be more to gain in complex topologies

Q: What'’s the best pre-training task?
Q: How do we calibrate high-dim representation? Thank You!

17



Backup



Background rejection

Bkg rejection
Bkg rejectionscajar + Hifrozen =

9.800758M training events
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95.0% signal efficiency
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Interactions =—»

[arXiv:2202.03772]
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CMS open data

* CMS simulated dataset: g H {'pfcand_ptilog', nul ]u
‘pfcand_e_log', null
/ ,
* Sample with jet, track and pfeand logeret’, mat]
SeCOndary vertex prOpertieS 4 ['pfcand_deltaR', null]

. ['pfcand_charge', null]
for H(bb) tagglng (http:// N \ ['pfcand_isChargedHad', null]
opendata.cern.ch/record/ N . { E;zz:g—i’;:;;gal“ff| e .
12102) o H [*pfcand_isEl', nulll

['pfcand_isMu', null]
* meant for jet tagging, up to {Zgig:;ﬁ—j;;,};‘-'f . "
100 pf cand per jet - 17 feats 10M events / 22M jets [*pfcand_dz', null]
['pfcand _dzerr', null]
eaCh R=0.8 Groomed Fat jet [ | pfcand—deta | y TG L [']
. . | o SaEm ['pfcand_dphi', null]
* signal samples: 11 mass points _ _ vectors:
- H length: 110
) M_X from 600 Gev to 4500 : ' |:;i:'¢i1|!_‘.l ] mode: wrap
GeV, bkg: QCD multijet v vars: N
’ . y R=0.2 Track Jet Y 7 [ r-o. Track Jet {E;E::S_E;(' ::: 1 :}
) fat ]ets (ﬁ) 4-m0meﬂta and [pfcand:pz: llll |]
(Old) Xbb SCOre Sepmne D [pfcand_energy, nulll]

Primary Vertex

[ http:/cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/ ]
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