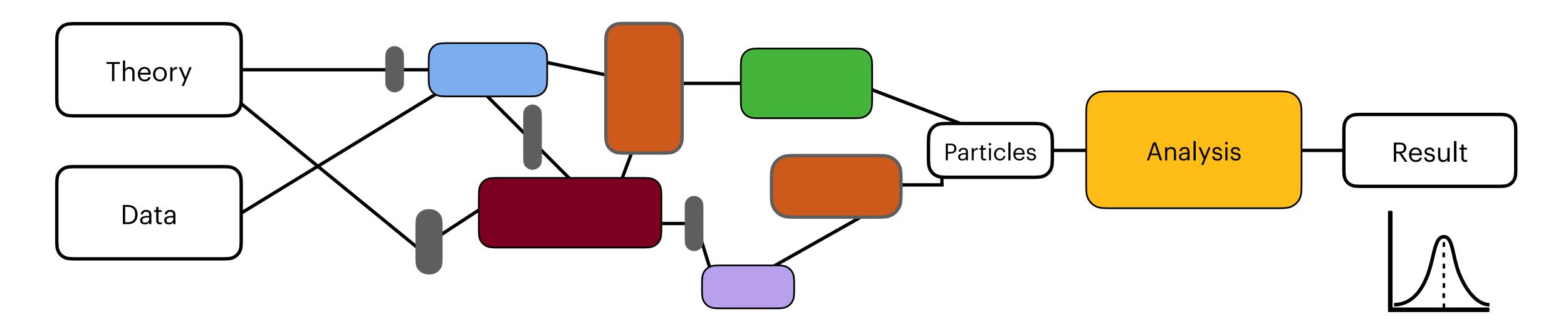
Finetuning Foundation Model for Analysis Optimization

Lukas Heinrich, Nicole Hartman, <u>Matthias Vigl</u>

ML4Jets 2023 – November 6th

Analysis pipeline at the LHC

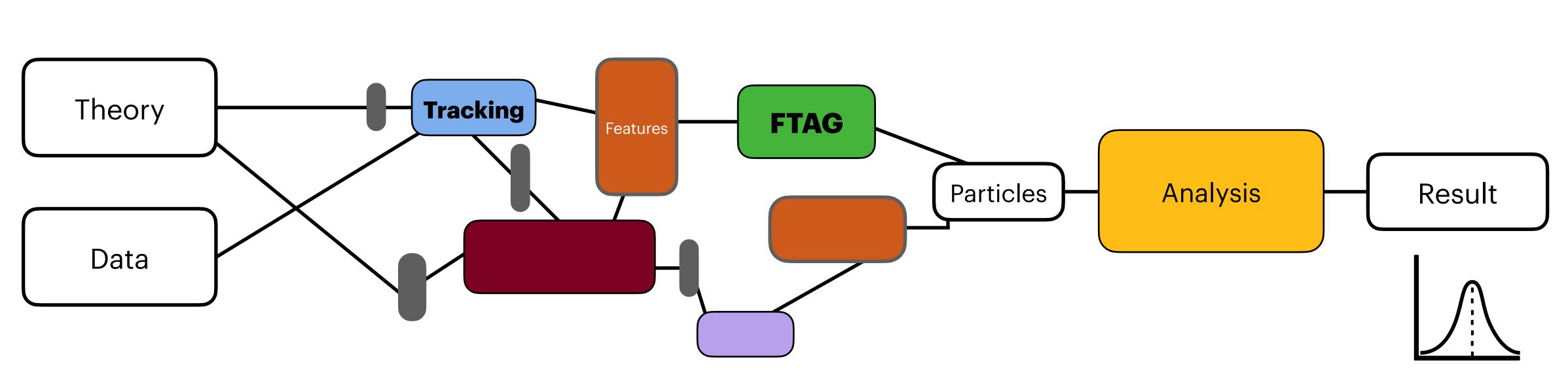
- Lots of (also ML) components in our analysis pipeline
- But each optimized separately and downstream components are optimized based on the steps prior to it



Analysis pipeline at the LHC

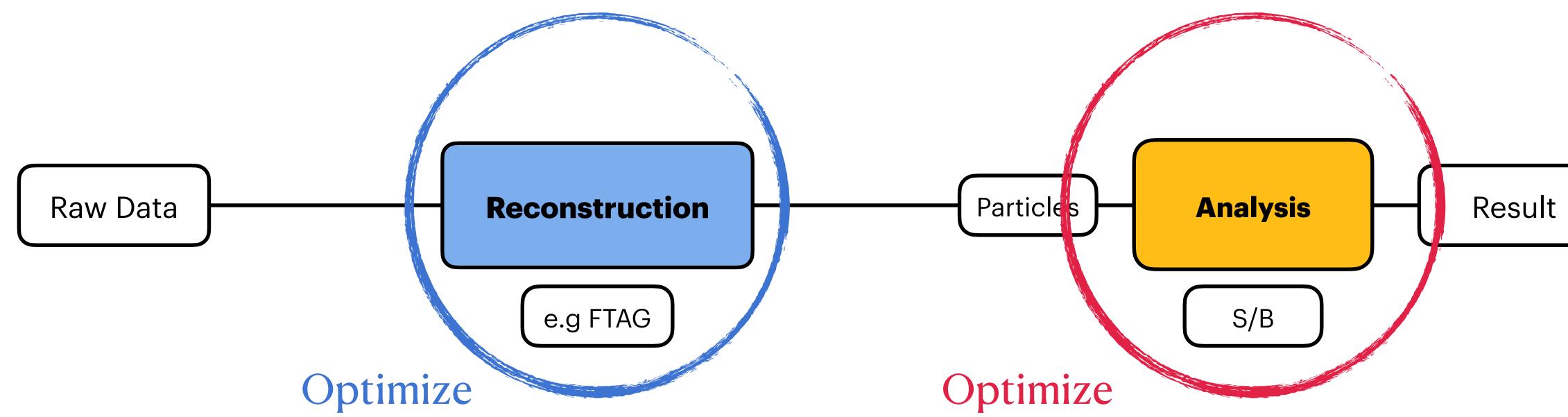
e.g. b-tagging can only be optimized after tracking, but we rarely reoptimize tracking for b-tagging

We optimize the parameters of the reconstruction and then freeze them

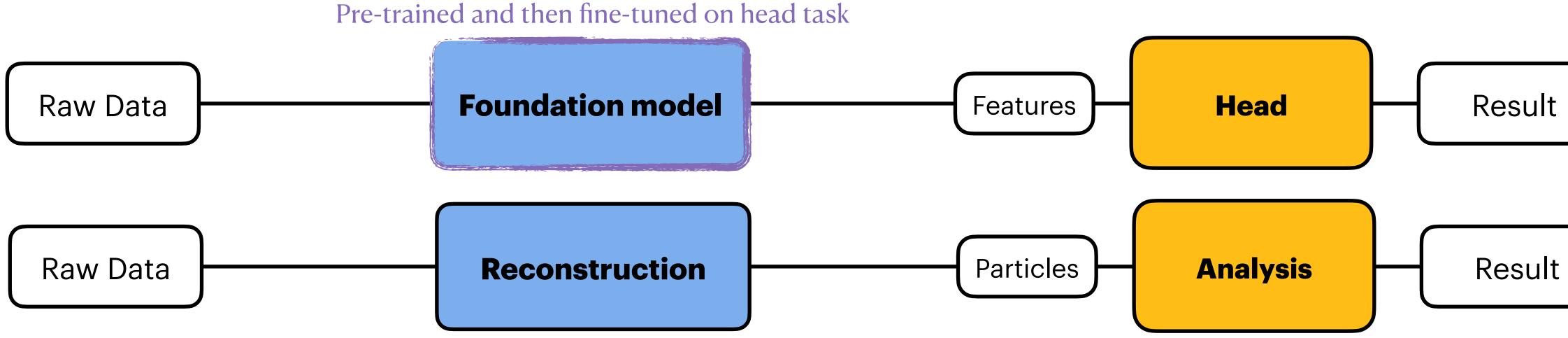


Analysis pipeline at the LHC

The optimization of the sensitivity is primarily the job of the **analysis**, given a fixed **reconstruction** - mostly common for all analysis



End-to-end Deep Learning ML and HEP setups are fortunately very aligned Also often split in two parts, but key difference is that backbone can be fine-tuned w/ gradient descent Pre-trained and then fine-tuned on head task



Q: Could this workflow also work in HEP?

• fine-tuning is now standard in large-scale ML - introduced in HEP with e.g. neos and inferno

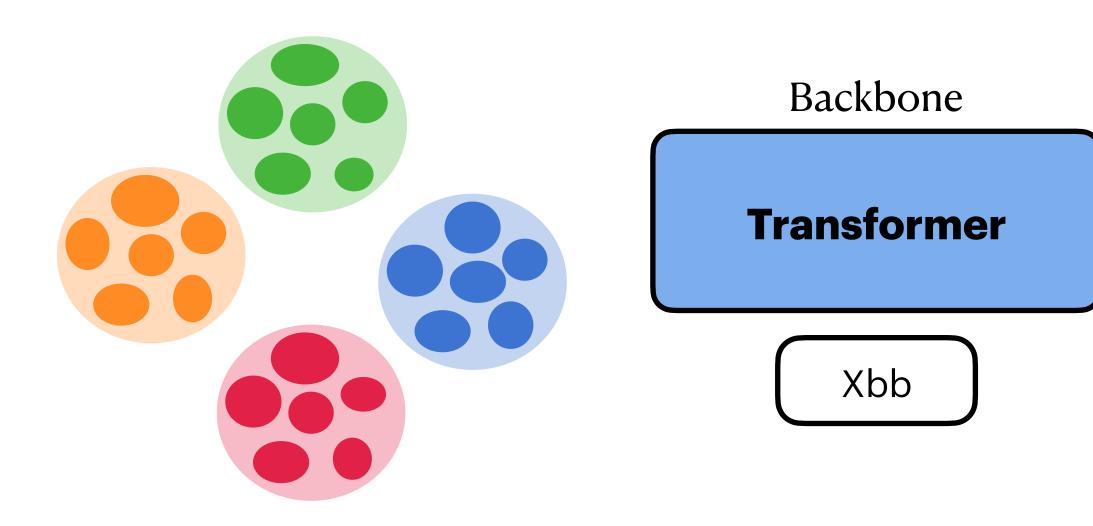
[https://arxiv.org/abs/2203.05570] [https://arxiv.org/abs/1806.04743]

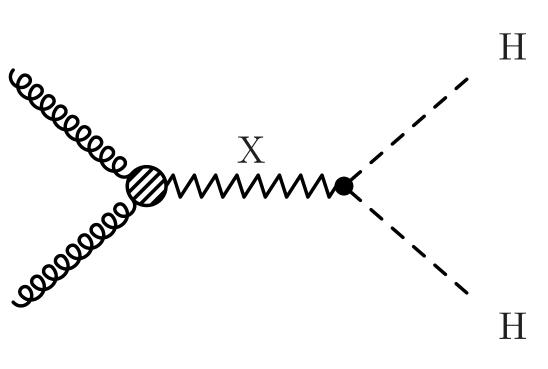
A toy end-to-end Analysis

g

g

X → HH → 4b. Final state with Higgs/QCD Jets

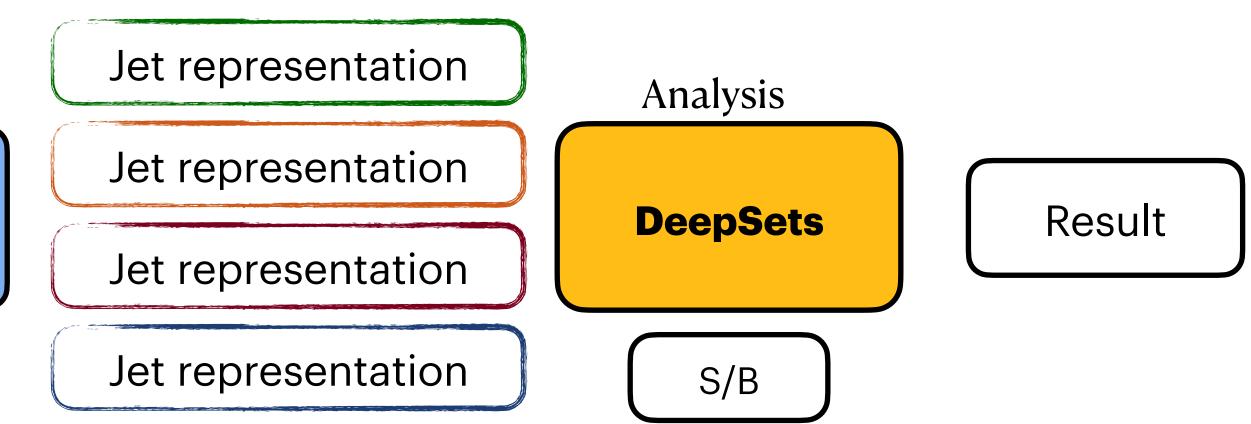




Finetuning Foundation Model for Analysis Optimization

Matthias Vigl,¹ Nicole Hartman,¹ and Lukas Heinrich¹ ¹Technical University of Munich

to appear arxiv:23XX.XXXX



Jets are clustered using the antikT algorithm with R=0.8 from particle flow (PF) candidates

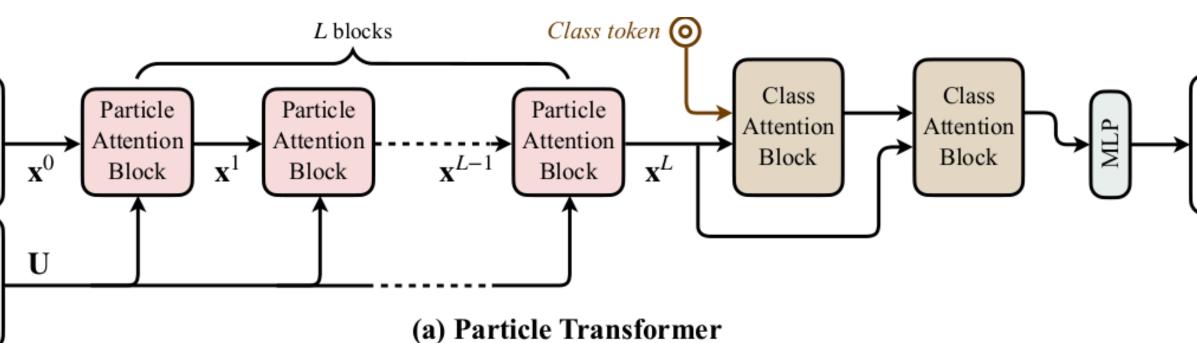
Constituents features:

- up to 100 PF per jet
- 17 features per PF

High-level features:

- Jet 4-momenta
- Xbb scores from ParT

Setup: CMS open data and ParT



Particle transformer for FTAG [arXiv:2202.03772] Training: QCD vs Higgs jets

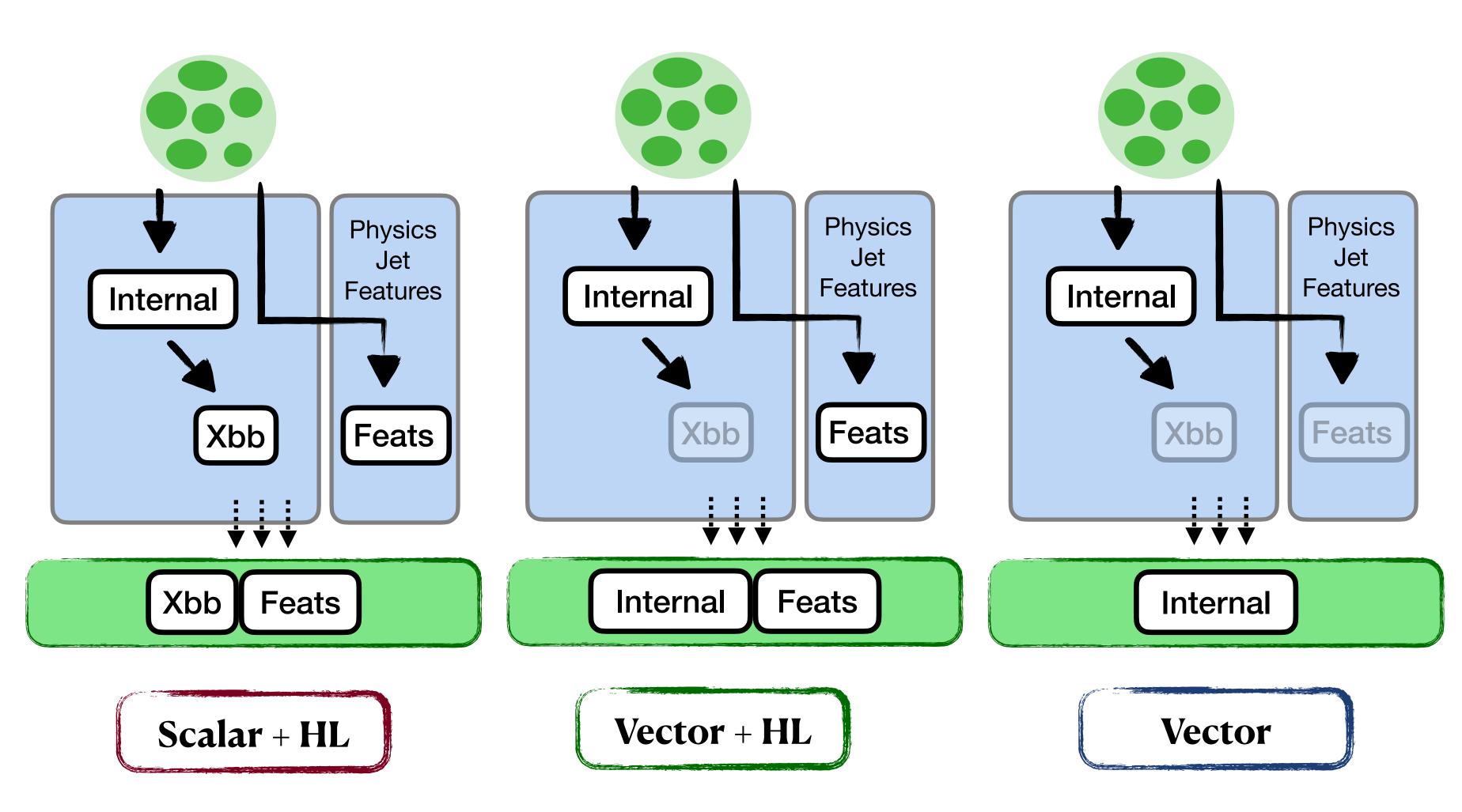
10M events / 22M jets

Backbone Jet representation

Analysis would typically use Xbb + HL features

ParT comes up with its own Internal representation (128 dim) when learning about jet flavour

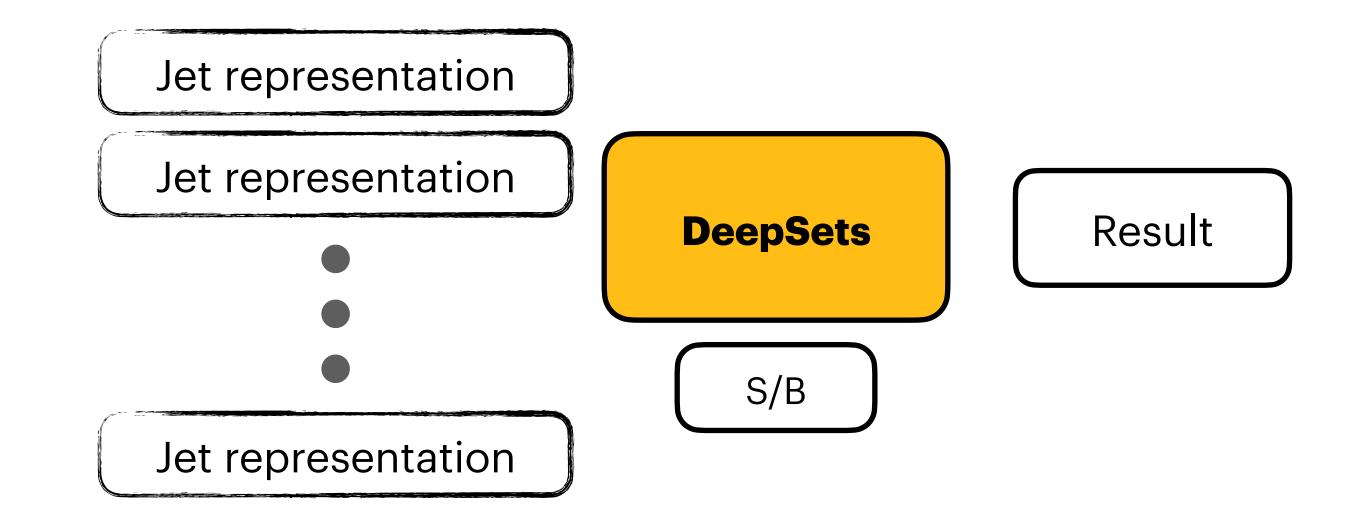
Q: Do high-dim embeddings hold more (useful) info than Xbb+HL features?



The head is trained for S/B discrimination with Jet representations from backbone as inputs Variable number of jets per event + Permutation Invariance -> DeepSets

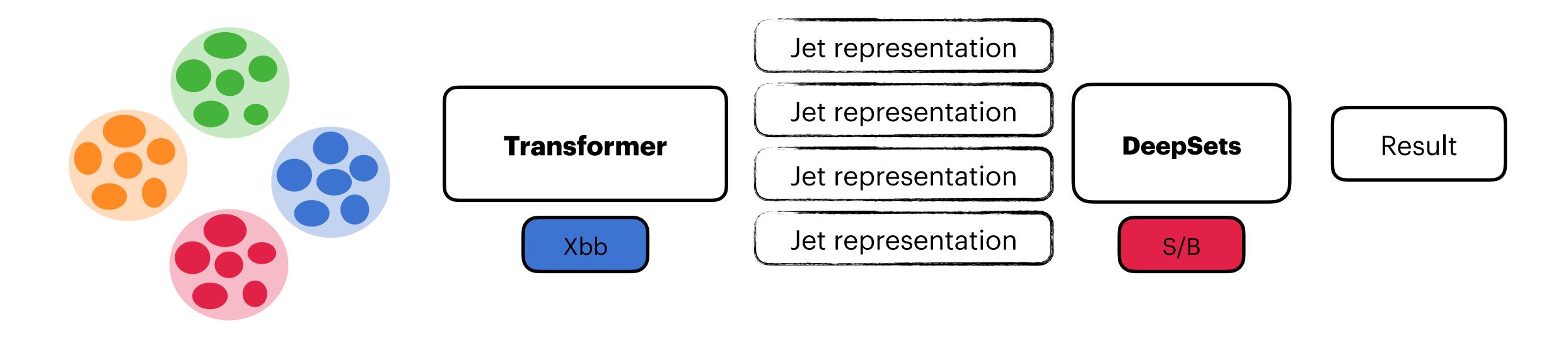
Q: Does fine-tuning the jet representation help?

Analysis head



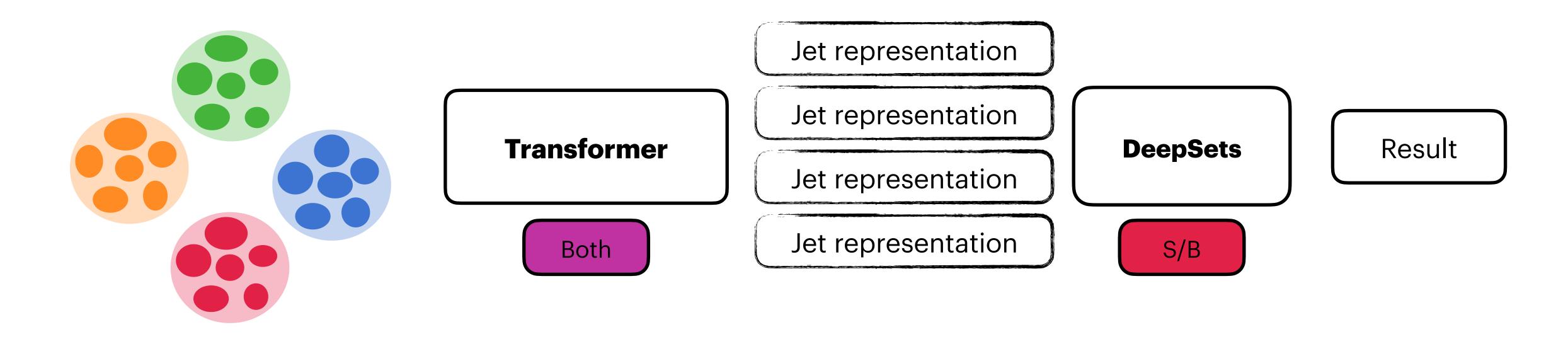
Frozen training

ParT backbone trained on **Xbb** task and then frozen DeepSets + binary classification trained on S/B



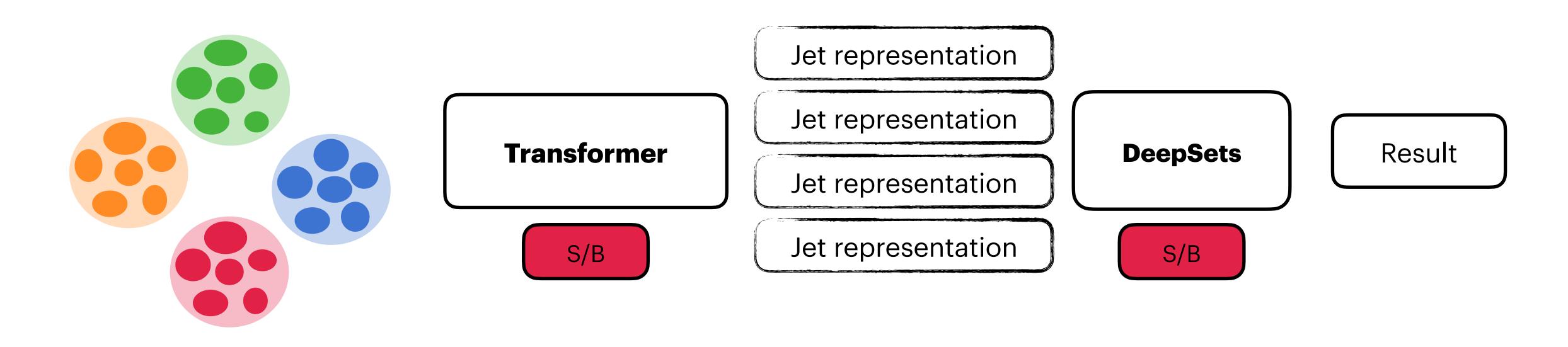
Fine-tuned training

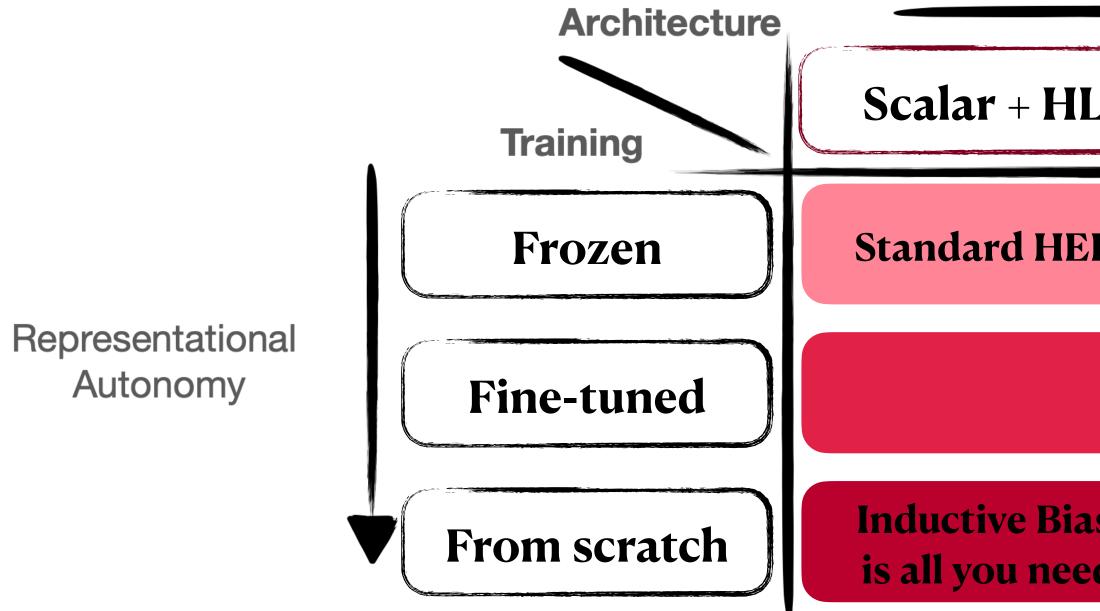
ParT backbone pre-trained on **Xbb** task Then **fine-tuning** on **S/B**



From scratch training

No backbone pre-training Backbone + head trained from scratch on S/B





Q: Could we just train from scratch? Does pre-training matter? Q: Is fine-tuning as in modern ML worth it? Q: Do we see benefits of scale & adjacent pre-training tasks?

Trainings in summary

Structural Autonomy

L	Vector + HL	Vector
2 P		Hope for sufficient stat
	ML-assisted HEP	
as ed		'Hits to Higgs'

10²

10¹

10⁰

Ħ

<u>stion ction</u>

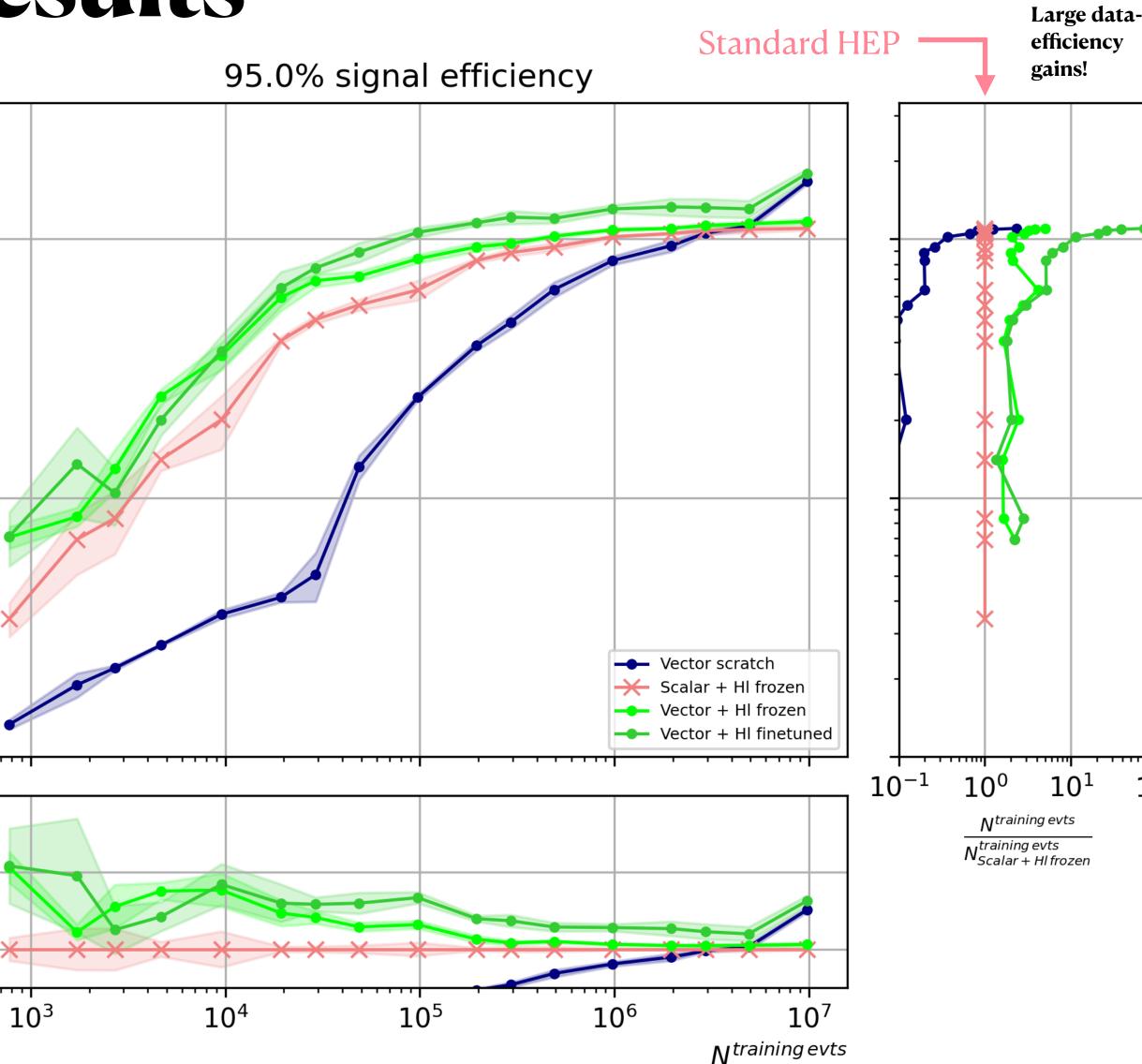
Bk<u>(</u> Bkg rejec

Background rejection

Well-known patterns from ML seem to hold also in HEP

- Fine-tuning for Analysis extracts more info than just pre-trained features
- Fine-tuning workflow helps in both performance & data efficiency (10-100x wrt standard hep)
- Higher-dim embeddings also seem to be useful

Results



10² ·

10¹

 10^{0}

2

kg rejection ction_{Scalar + t}

Bk<u>(</u> Bkg rejec

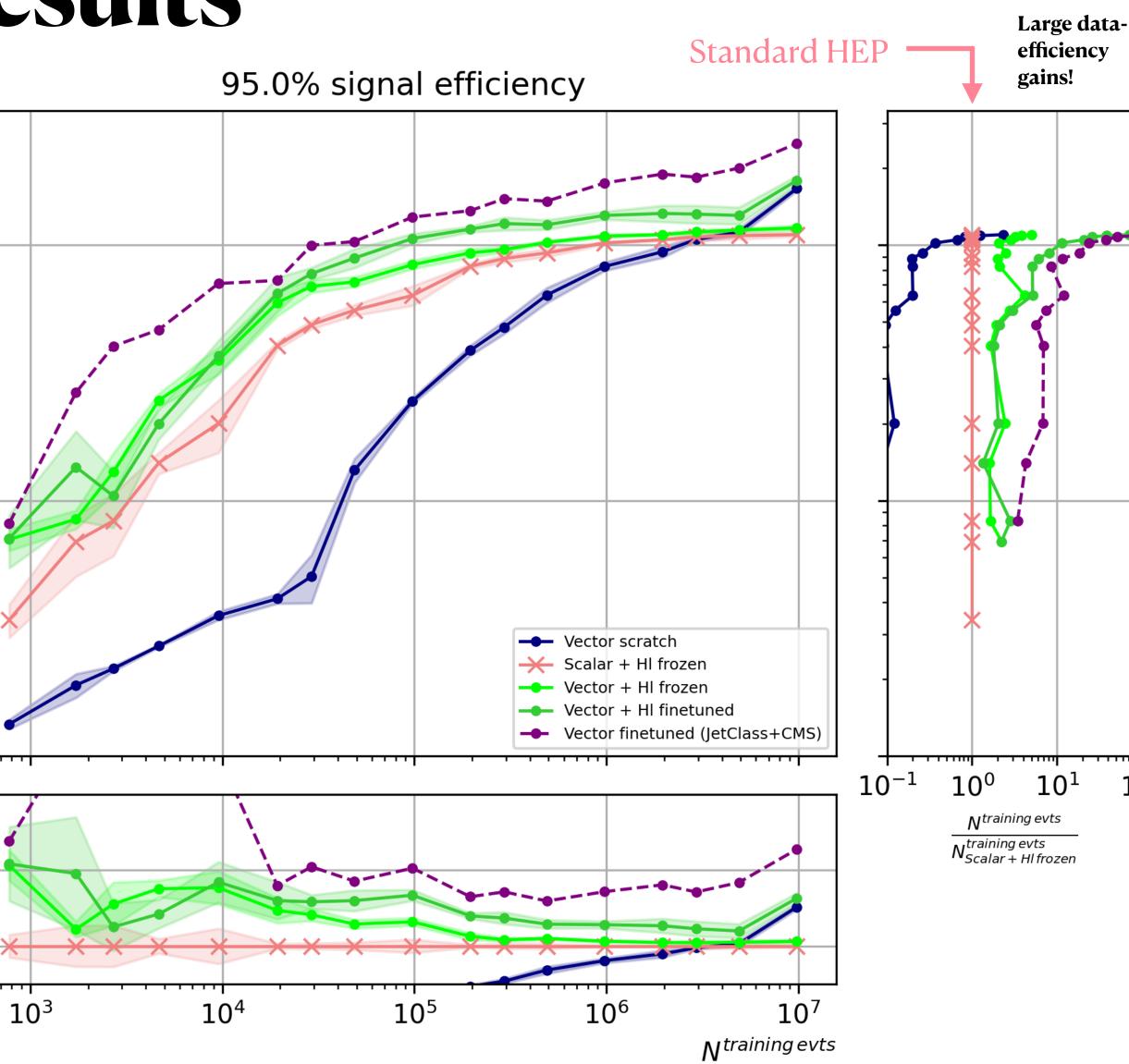
Background rejection

Well-known patterns from ML seem to hold also in HEP

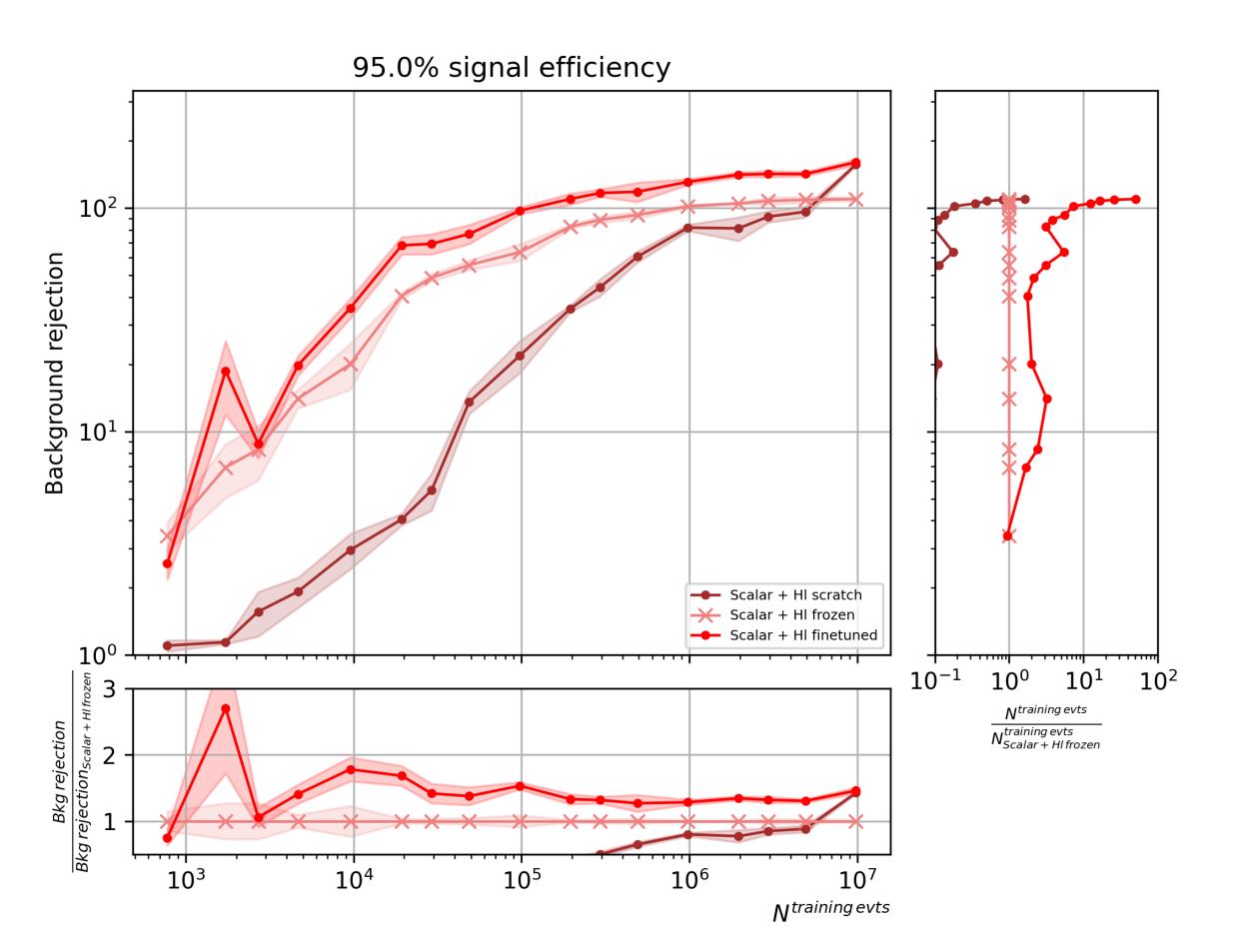
• More pre-training helps

ParT backbone also pretrained on a different dataset: JetClass (10 jet labels)

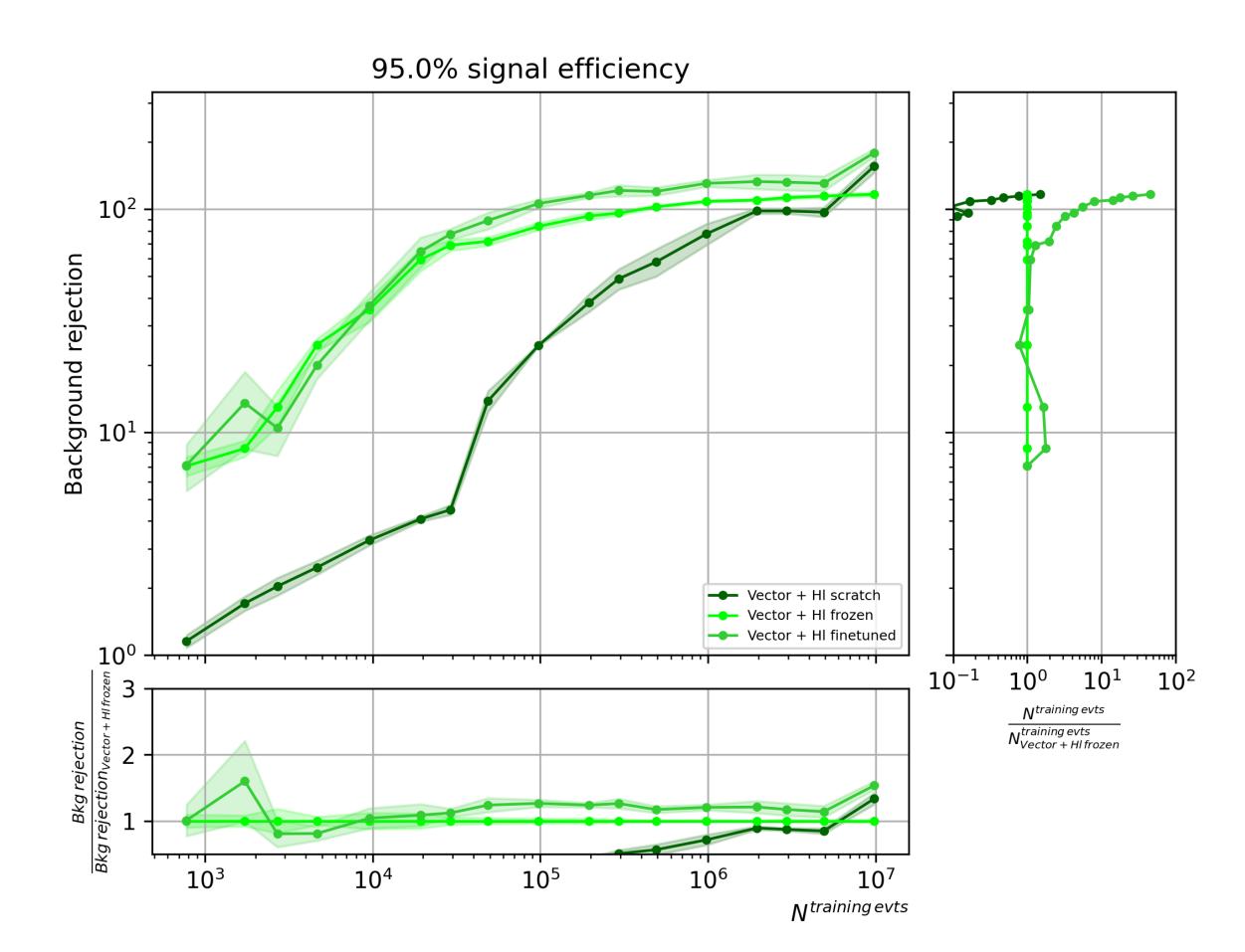
Results



From scratch training also works, it's just slow



Results



Conclusions

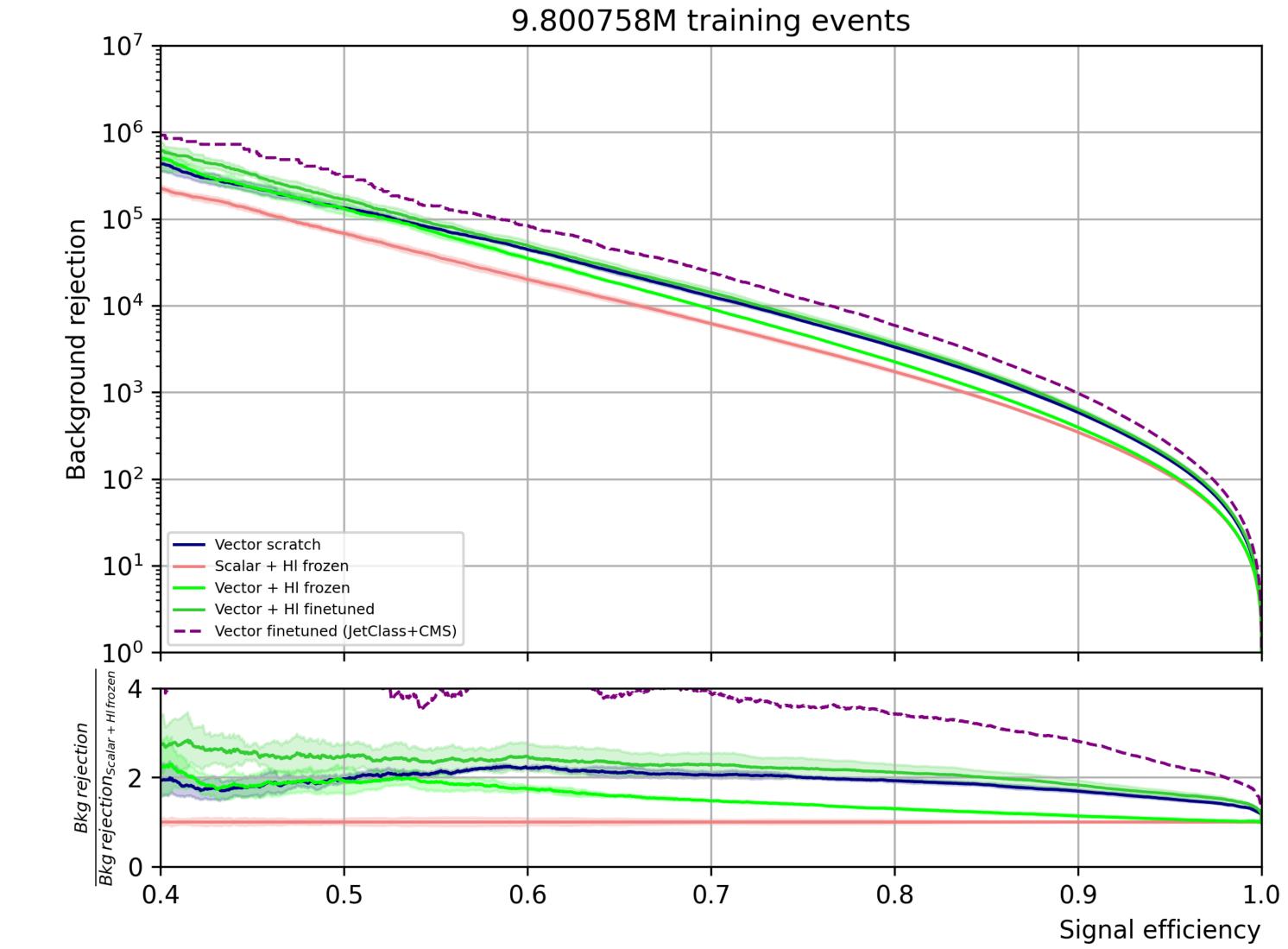
Fine-tuning workflow for end to end analysis works and is useful even for simple examples

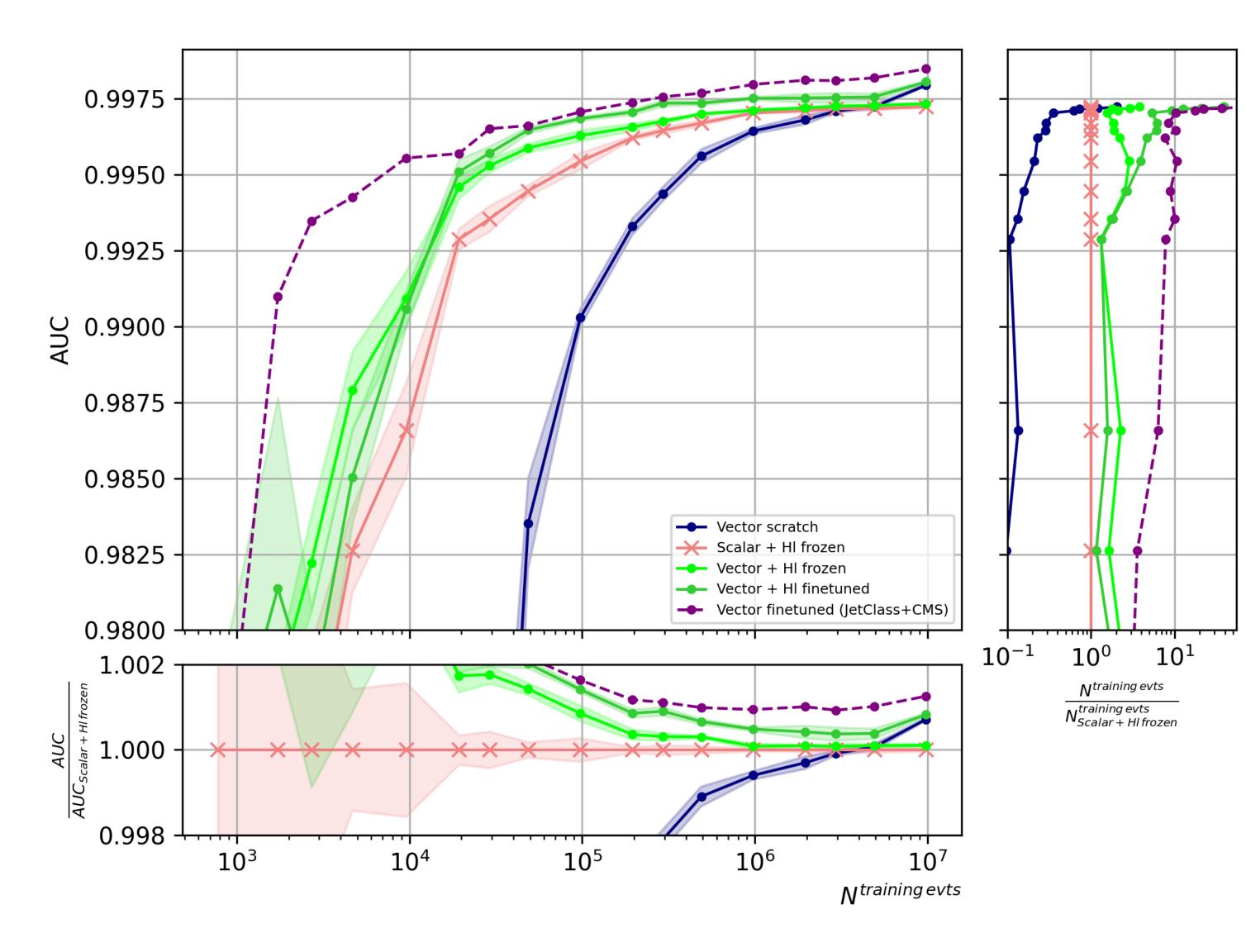
- Gains in both data efficiency & performance wrt standard HEP
 - 2x in background rejection
 - 10-100x in data efficiency
- There might be more to gain in complex topologies
- Q: What's the best pre-training task?

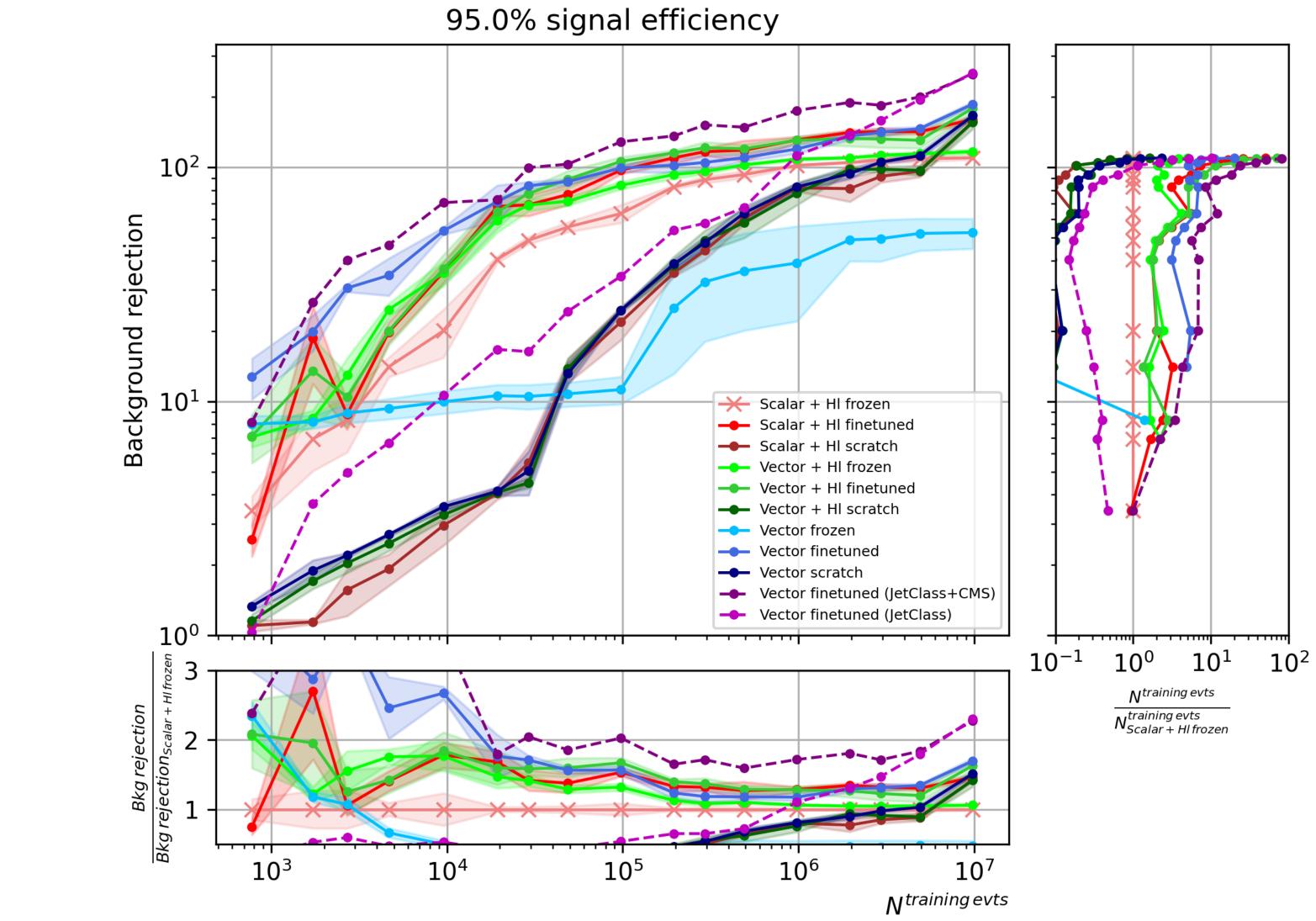
Q: How do we calibrate high-dim representation?

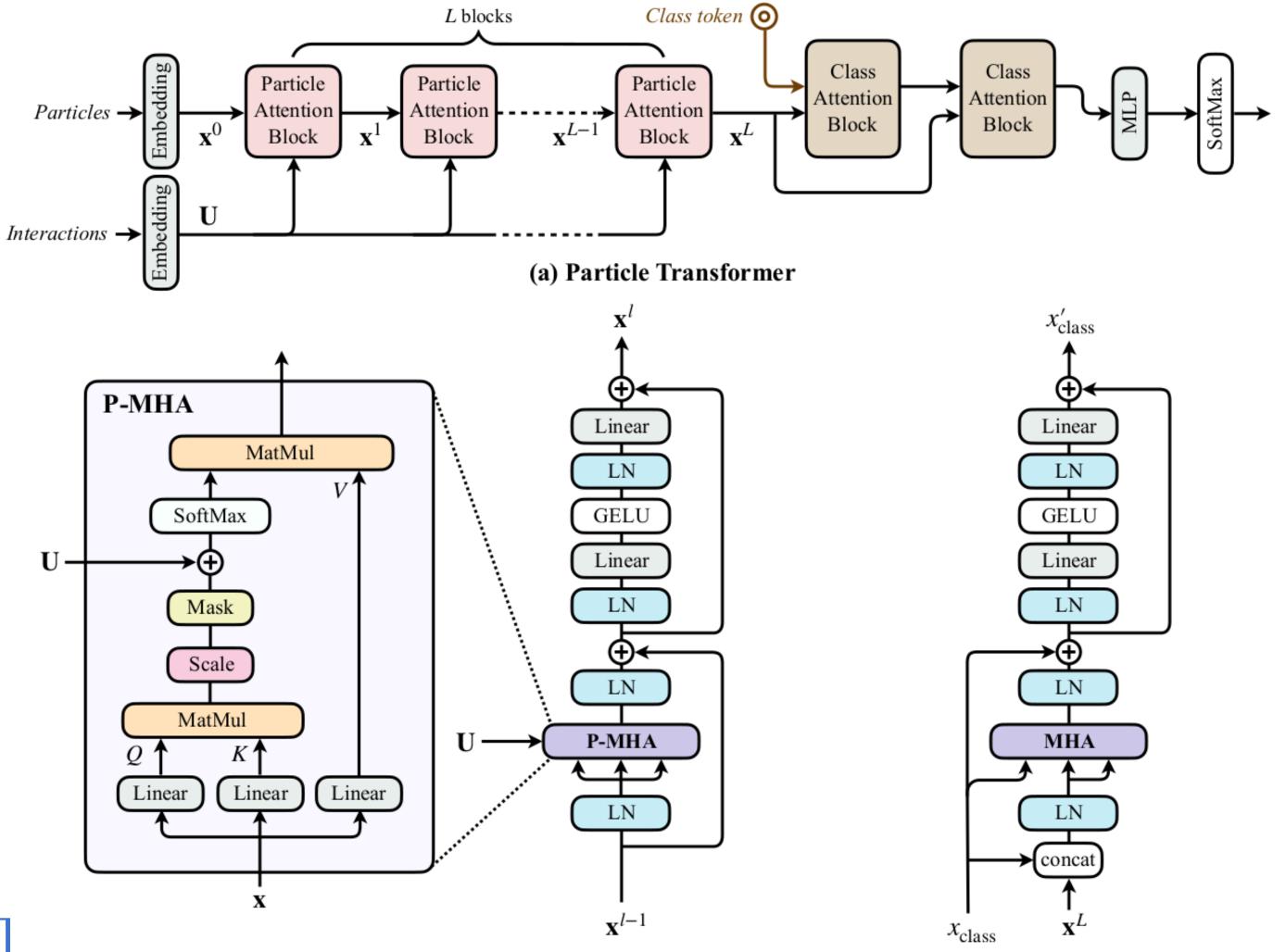
Thank You!

Backup









[arXiv:2202.03772]

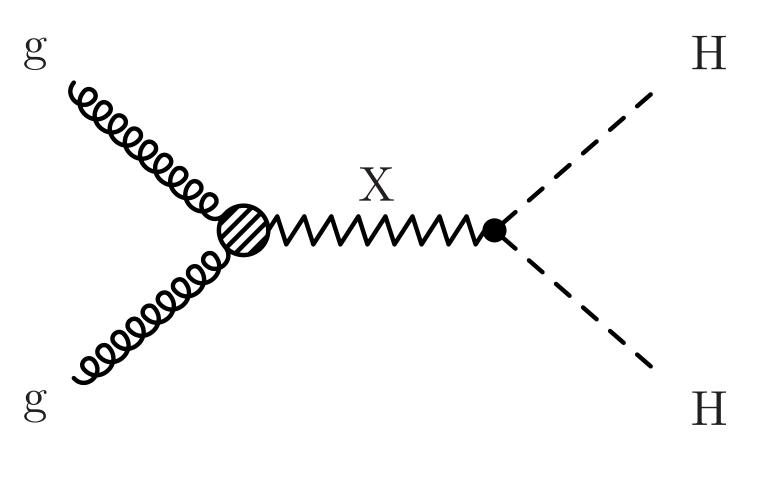
(b) Particle Attention Block

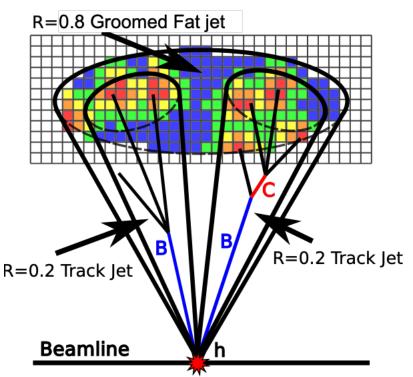
ParT

(c) Class Attention Block

- CMS simulated dataset:
- Sample with jet, track and secondary vertex properties for H(bb) tagging (http:// opendata.cern.ch/record/ 12102)
- meant for jet tagging, up to 100 pf cand per jet - 17 feats each
- signal samples: 11 mass points - M_x from 600 GeV to 4500 GeV, bkg: QCD multijet
- 'fat jets' (fj) 4-momenta and (old) Xbb score

[http://cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/]





CMS open data

10M events / 22M jets

Primary Vertex

['pfcand_pt_log', null] - ['pfcand_e_log', null] ['pfcand_logptrel', null] ['pfcand_logerel', null] — ['pfcand_deltaR', null] — - ['pfcand_charge', null] ['pfcand_isChargedHad', null] ['pfcand_isNeutralHad', null] — ['pfcand_isGamma', null] - ['pfcand_isEl', null] ['pfcand_isMu', null] - ['pfcand_dz', null] ['pfcand_dzerr', null] - ['pfcand_dz', null] ['pfcand_dzerr', null] - ['pfcand_deta', null] - ['pfcand_dphi', null] pf_vectors: length: 110 pad_mode: wrap vars [pfcand_px, null] — [pfcand_py, null] [pfcand_pz, null] – [pfcand_energy, null]

