Construction and Fitting of a Deep Generative Hadronization Model

Xiangyang Ju, <u>Adam Kania</u>, Andrzej Siódmok, Benjamin Nachman, Vishnu Sanglie, Jay Chan

ML4Jets 2023, Hamburg

Adam Kania

Quantum chromodynamics (QCD)

QCD correctly describes strong interactions in each energy range but it is very difficult to obtain precise predictions

High energy

- perturbative QCD
- we have theoretical models
- but they are hard to use in practice

Low energy

- non-perturbative QCD
- we lack solid theoretical models
- so we use phenomenological models (with many free parameters)

Hadronization

Hadronization: one of the least understood elements of MCEG

Why hadronization?

Hadronization:

→ Good models for perturbative QCD ⇒

LHC measurements are limited by non-perturbative components (e.g. hadronization).

- W mass measurement using a new method [Freytsis at al. JHEP 1902 (2019) 003]
- Extraction of the strong coupling in [M. Johnson, D. Maître, Phys.Rev. D97 (2018) no.5]
- Top mass [S. Argyropoulos, T. Sjöstrand, JHEP 1411 (2014) 043]

- ...

Pier Moni's talk FCC Physics Workshop 2023

- However, hadronisation remains the main bottleneck
 - e.g. thrust in Higgs decays (MC variation in plot)
- Increase in energy insufficient for suppression ($Q \sim m_{\rm H}$)
- Runs at lower energies are essential for a robust tuning of NP models in MCs
- Also crucial for training of ML algorithms for jet tagging, instrumental in extraction of Higgs couplings

Cluster hadronization model in nutshell

Cluster model in nutshell

•

Ο

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

QCD provide **pre-confinement** of colour Colour-neutral pairs of quarks form the clusters eleeleelee 000000000

Cluster model in nutshell

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

- QCD provide **pre-confinement** of colour
 - Colour-signet pairs of quarks form the clusters
- Pre-confinement states that the energy distribution of clusters is independent of the hard process and energy of the collision
 - Peaked at low mass (1-10 GeV) typically decay into 2 hadrons

Adam Kania

Cluster model in nutshell

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

- **Pre-confinement** states that the energy distribution of clusters is independent of the hard process and energy of the collision
 - Peaked at low mass (1-10 GeV) typically decay into 2 hadrons

Simulating Hadronization

Hadronization models

- Hadronization is a fitting problem
 - Existing models are highly parametric.
- Can ML hadronization be more flexible?

e.g. work on unbinned data

ML4Jets 2023, Hamburg

Hadronization models

Idea of using Machine Learning (ML) for hadronization.

Why it should work

NNPDF

NNPDF used successfully ML to nonperturbative Parton Density Functions (PDF).

Hadronization is closely related to Fragmentation Functions which were considered the counterpart of PDFs.

ML Approach

Our tool of choice: GANs

[Goodfellow et al. "Generative adversarial nets". arxiv:1406.2661]

Cluster hadronization model

The philosophy of the model: use information from perturbative QCD as an input for hadronization.

• ML hadronization

1st step: generate kinematics of a cluster decay

• How?

Use Generative Adversarial Networks (GAN)

First Step Towards a ML Model for Hadronization

Performance: Data!

With a "full" model, we can compare directly to data!

LEP DELPHI Data

HADML v2

Discriminator HadML v2

The discriminator function is modified, we parameterize is as a Deep Sets model

$$D_E(x) = F\left(\frac{1}{n}\sum_{i=1}^n \Phi(h_i, \omega_{D_\Phi}), \omega_F\right) \xleftarrow{\text{invariant under}} permutations of hadrons$$

Performance

Outlook

What is next for HADML?

- Number of technical and methodological step needed:
 - → Directly accommodate multiple hadron species with their relative probabilities
 - → Hyperparameter optimization, including the investigation of alternative generative models
 - → More flexible model with a capacity to mimic the cluster or string models as well as go beyond either model.

There is still a multi-year program ahead of us, but it will be worth it!

Advertisement

A postdoc in ML/HEP position

If you are interested please contact: andrzej.siodmok@cern.ch

ML4Jets 2023, Hamburg

Thank you