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Why Foundation Models?
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Self-Supervised Learning

Popular Methods
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https://arxiv.org/pdf/2301.08243.pdf

Self-Supervised Learning
Popular Methods
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Masked modelling

Images and words

°* The BERT pretraining
strategy has been very
successful for NLP

* So has BEIT for images

* Tokenized targets
performed better than
direct regression
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Masked modelling
Does this work for HEP?

* Like language:
‘meaningful’ constituents
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Masked modelling
Does this work for HEP?

* Like language:
‘meaningful’ constituents
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Masked modelling
Does this work for HEP?
* Like language:

‘meaningful’ constituents

* Like Images:
continuous Inputs

cross entropy loss
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Masked modelling
Does this work for HEP?

cross entropy loss

* Like language:
‘meaningful’ constituents K -
ook () ) () (®) (&) 3] o

R : : _ \
L| ke .|mag eS_- [Masked Prediction Head
continuous Inputs

screfi ) hs @ encodings
* Unlike both: e [ we | = \
no positional information T Transformer Encoder
A . X /
\%—* AN VWY — N ] 1 e
mask

Original Jet Set of particles

10



Masked modelling
Strengths

* Very simple training objective and data pipeline yet

°* Proven to be very effective in NLP and computer vision
* Requires no augmentation / re-simulation

* Can train the backbone directly on data

* Pretraining at unprecedented scale
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Masked modelling

Performance
* Pretraining on 100M Jets from JetClass (Predicton]
A
* 10 classes [ Prediction Head ]
)
* How to quantify the performance of a encodings
pretrained model? p 4 \

Transformer Encoder

* Array of downstream tasks — fine tuning
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https://zenodo.org/records/6619768

Masked modelling

Downstream training strategies

* Train encoder and head
Fine-Tuned

* Freeze encoder, only train head
Fixed

* Reinitialize model, train from scratch
From scratch
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Masked modelling

FIne tune on pretraining set

* Select N events and fine tune 0.65°
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* The backbone model - .
outperforms from scratch 2055
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Masked modelling

Fine tune on new dataset

* The learned features are generically
useful

* The performance gain applies to
data generated with a different
simulator

* Change card to Atlas and fine-tune
(JetClass iIs CMS)
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Masked modelling

FIine tune on weak supervision

* Fine tuning with CWolLa
* Take two QCD samples

* Add x top jets to one sample and
label ‘signal’

* Fine-tune model on noisy labels
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Summary

Masked particle modelling

* Masked particle modelling Is a very useful pretraining task for HEP
* Shows great promise In example downstream classification tasks
* More data efficient
* Abllity to extrapolate to new datasets
* Better performance in weak supervision

* More to come!
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Masked modelling

Permutation invariance

* Three approaches to e
permutation invariance K -
| e G E W @ ) dstouon v
Don' worry about It T [Masked Prediction Head: <«— Assign order
discretise [ VQ-VAE ] E@ [T?i encodings
(frozen) Encoder 4 A
® |ﬂpUt 1(0) maSked Transformer Encoder
prediction head A T N . y
\%—’ AN UY— N ) L) e
mask

Original Jet Set of particles

20



Masked modelling

Permutation invariance

* Three approaches to
permutation invariance

* Don't worry about it

* Input to masked
prediction head
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