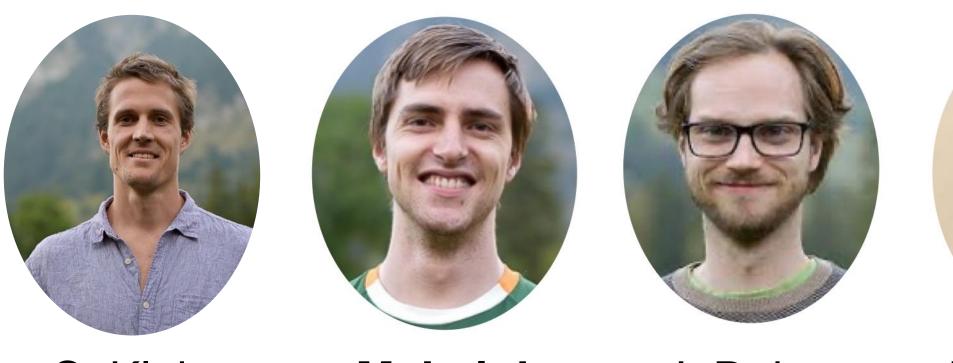
Masked particle modelling Foundation models for HEP



S. Klein

<u>M. Leigh</u>

J. Raine

L. Heinrich

M. Kagan

R. Osadchy

T. Golling

Why Foundation Models?

Large Unlabelled Dataset

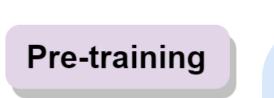
Charged Particle Tracks

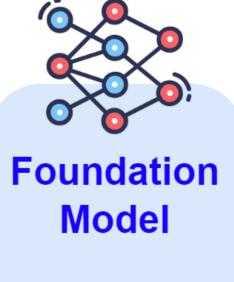
> Calorimeter Clusters

> Calorimeter Hits

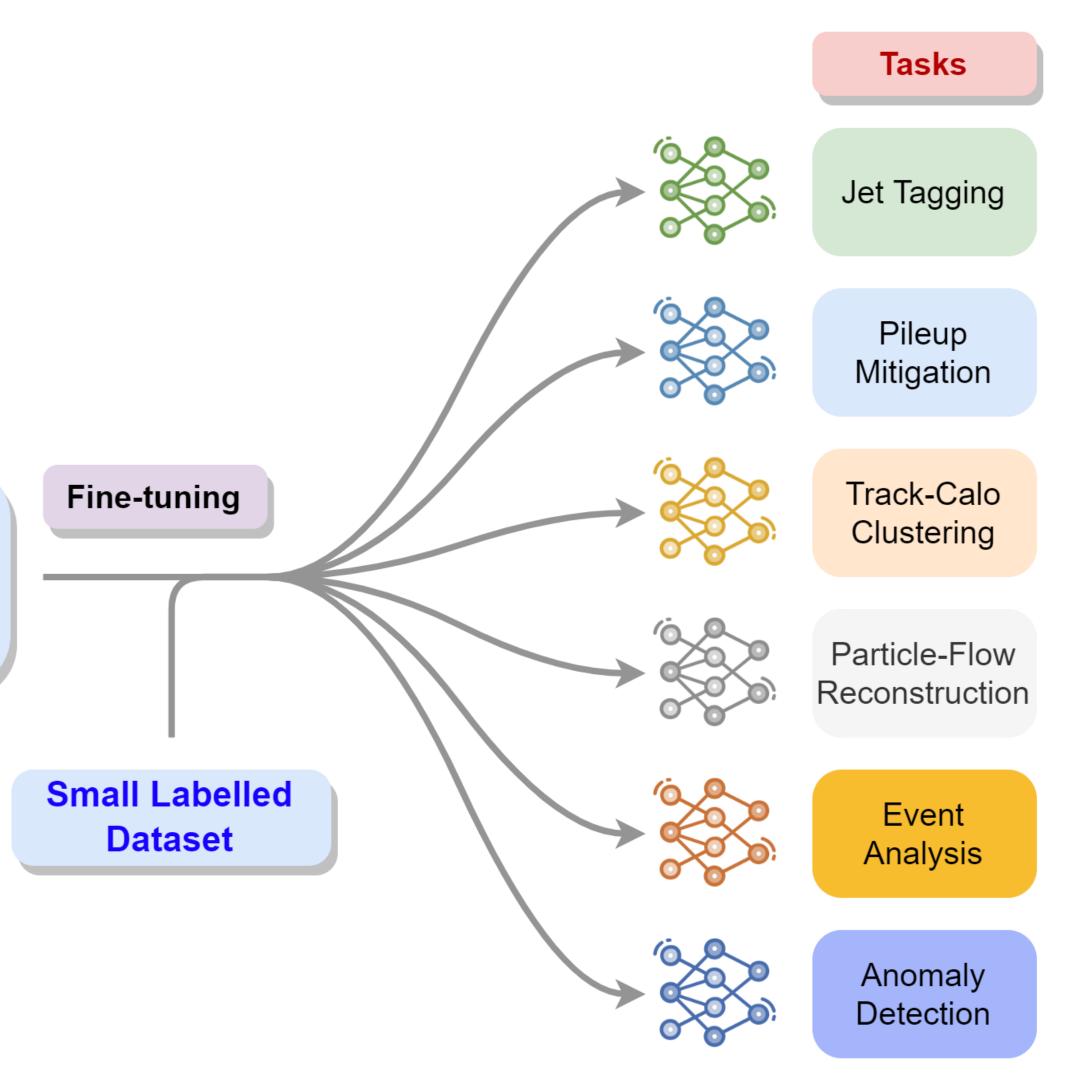
Muon Tracks

•

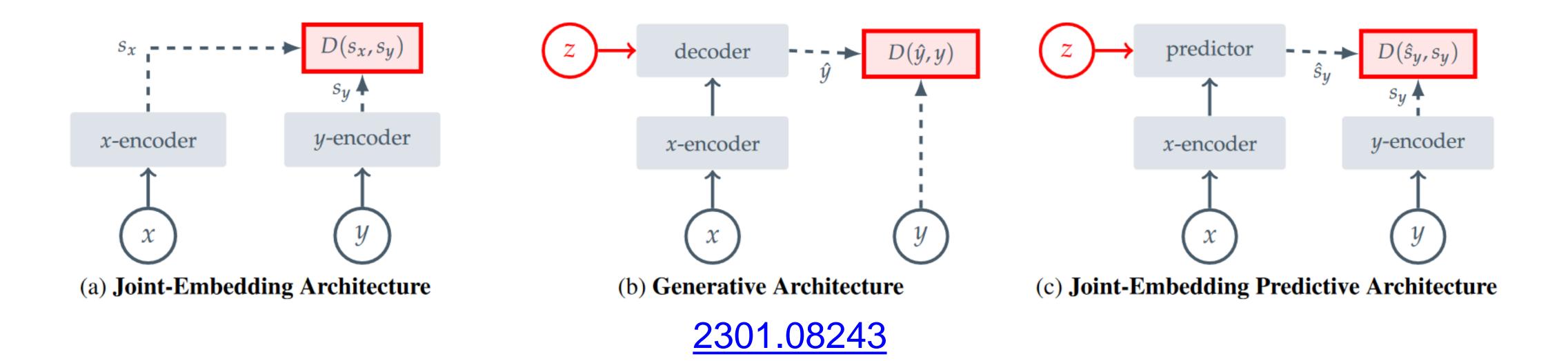




Multiple modalities



Self-Supervised Learning Popular Methods

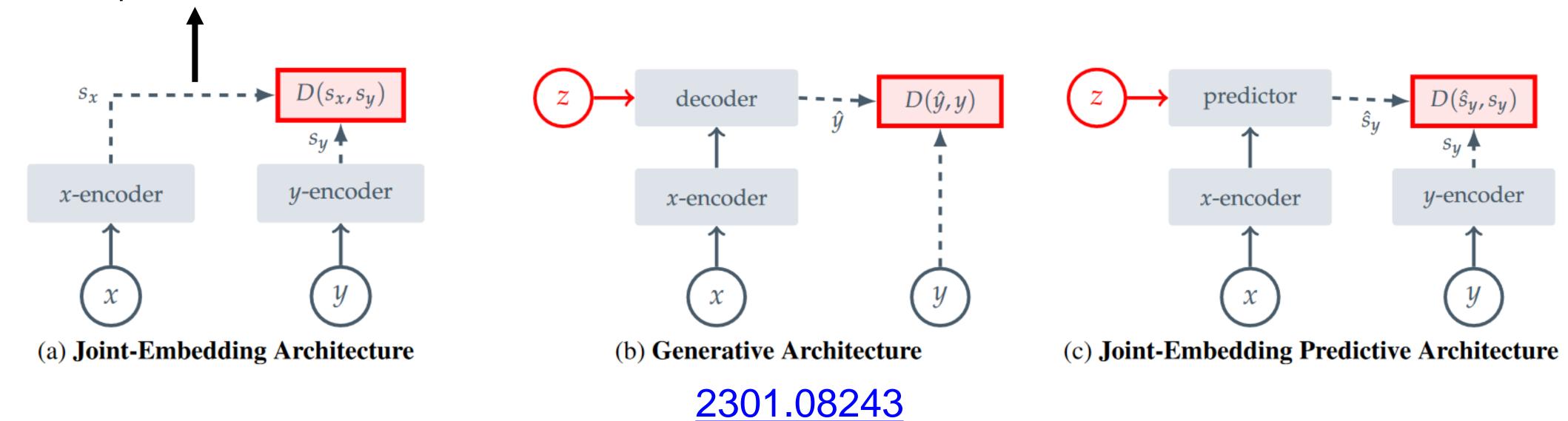


Self-Supervised Learning Popular Methods

JetCLR - Heidelburg/Hamburg

RS3L - MIT/KIT/SLAC

Detector Replicas - NYU/Weizman

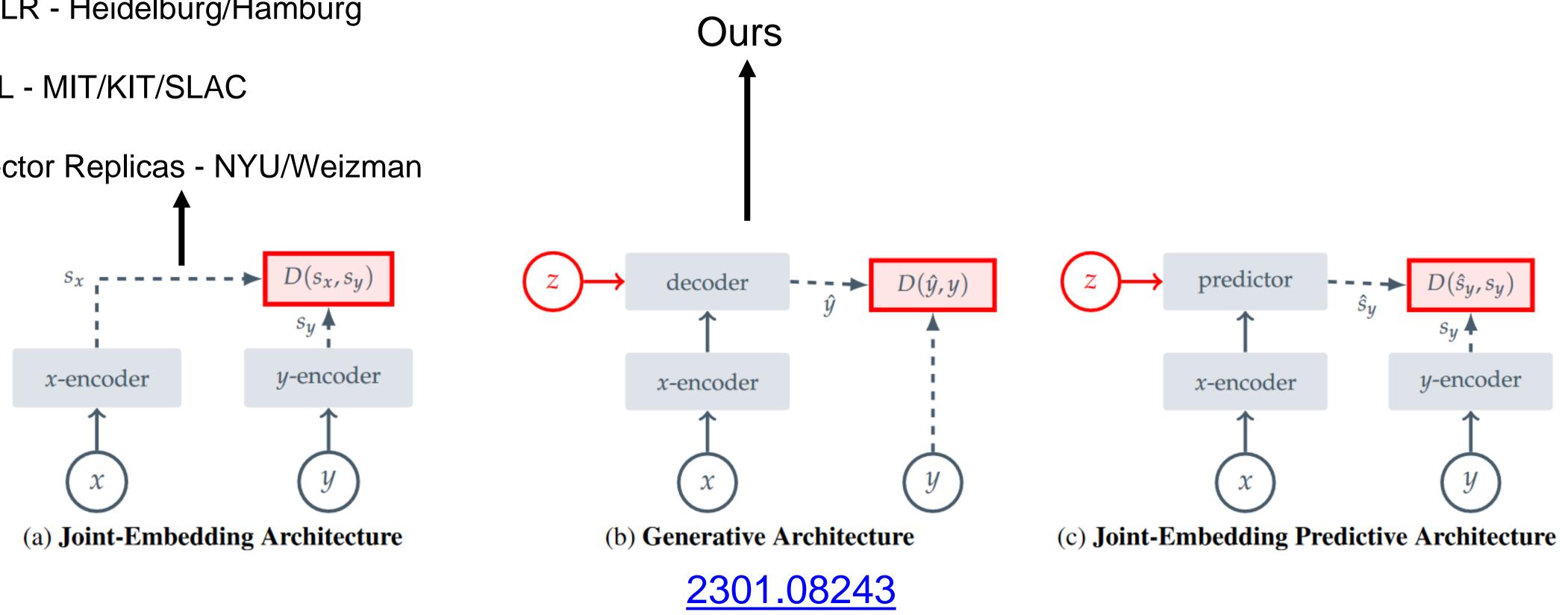


Self-Supervised Learning **Popular Methods**

JetCLR - Heidelburg/Hamburg

RS3L - MIT/KIT/SLAC

Detector Replicas - NYU/Weizman



Masked modelling Images and words

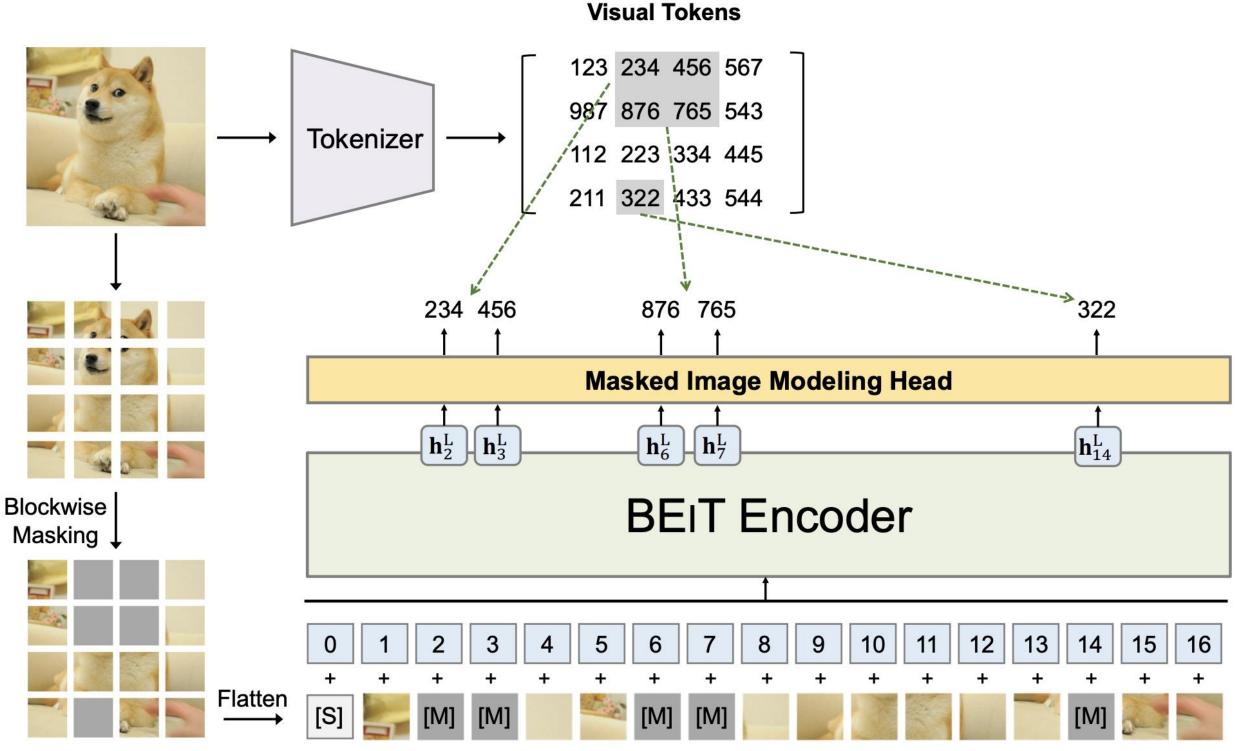
- The <u>BERT</u> pretraining strategy has been very successful for NLP
- So has <u>BEIT</u> for images
 - Tokenized targets performed better than direct regression

Original

Image

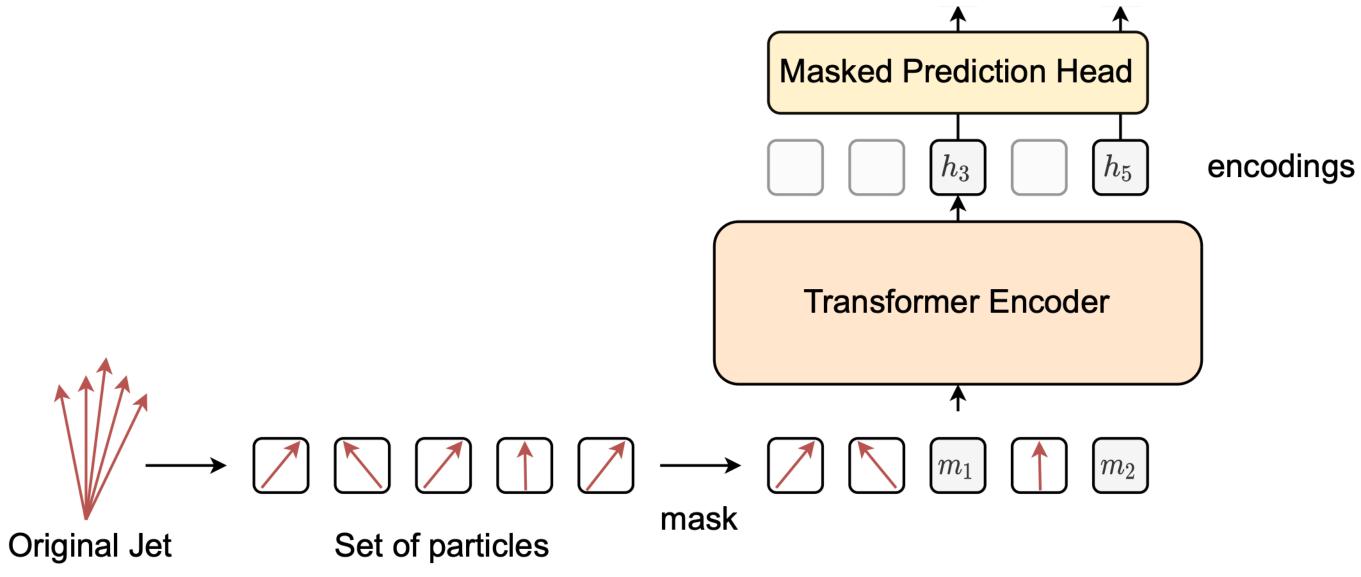
Image

Patches

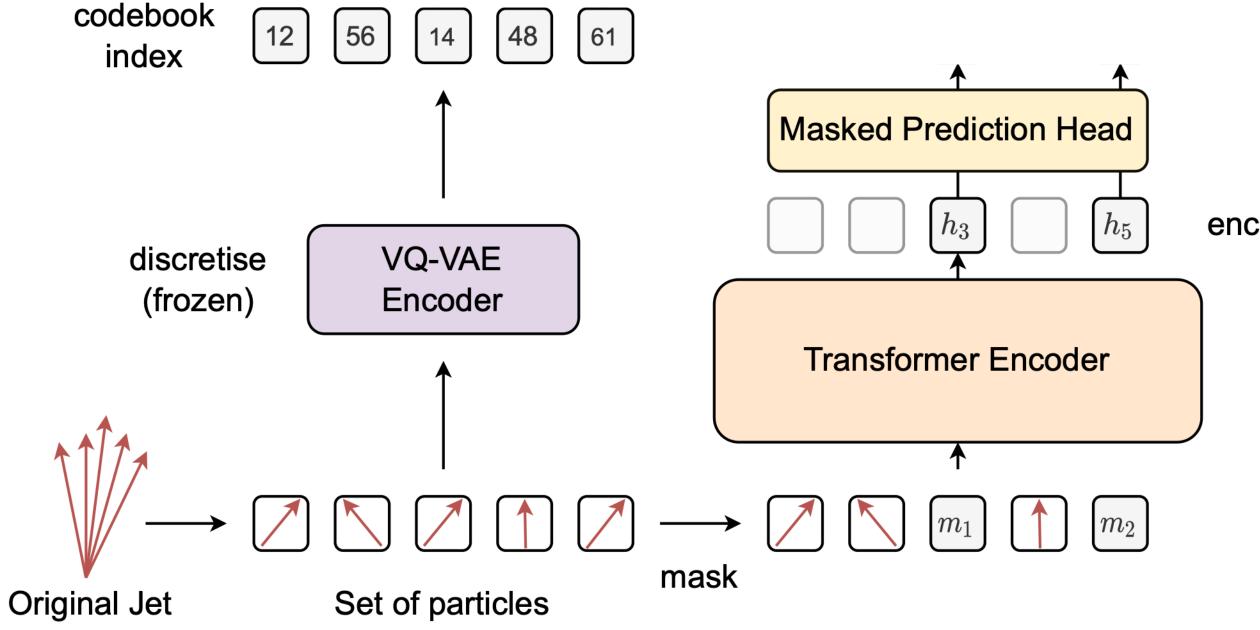


2106.08254

• Like language: 'meaningful' constituents

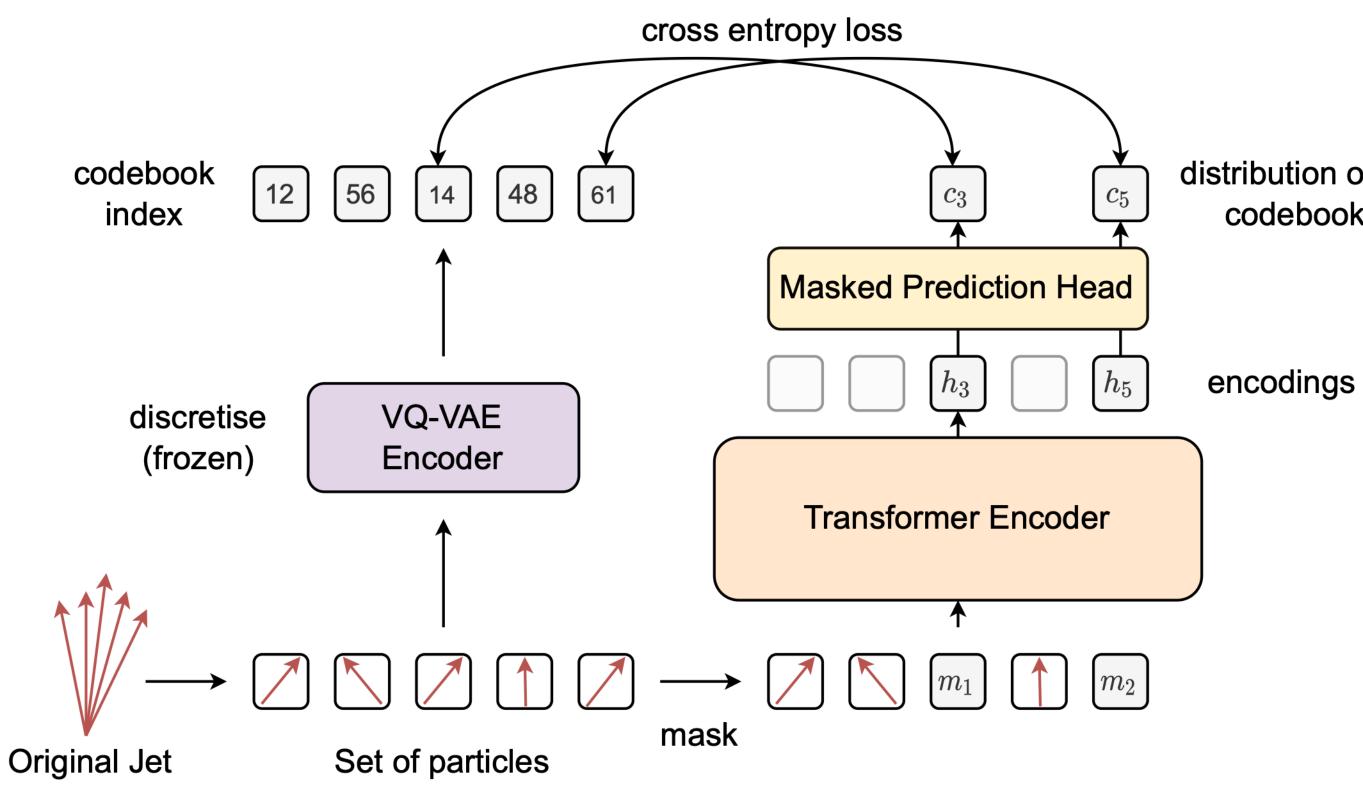


- Like language: 'meaningful' constituents
- Like images: continuous inputs



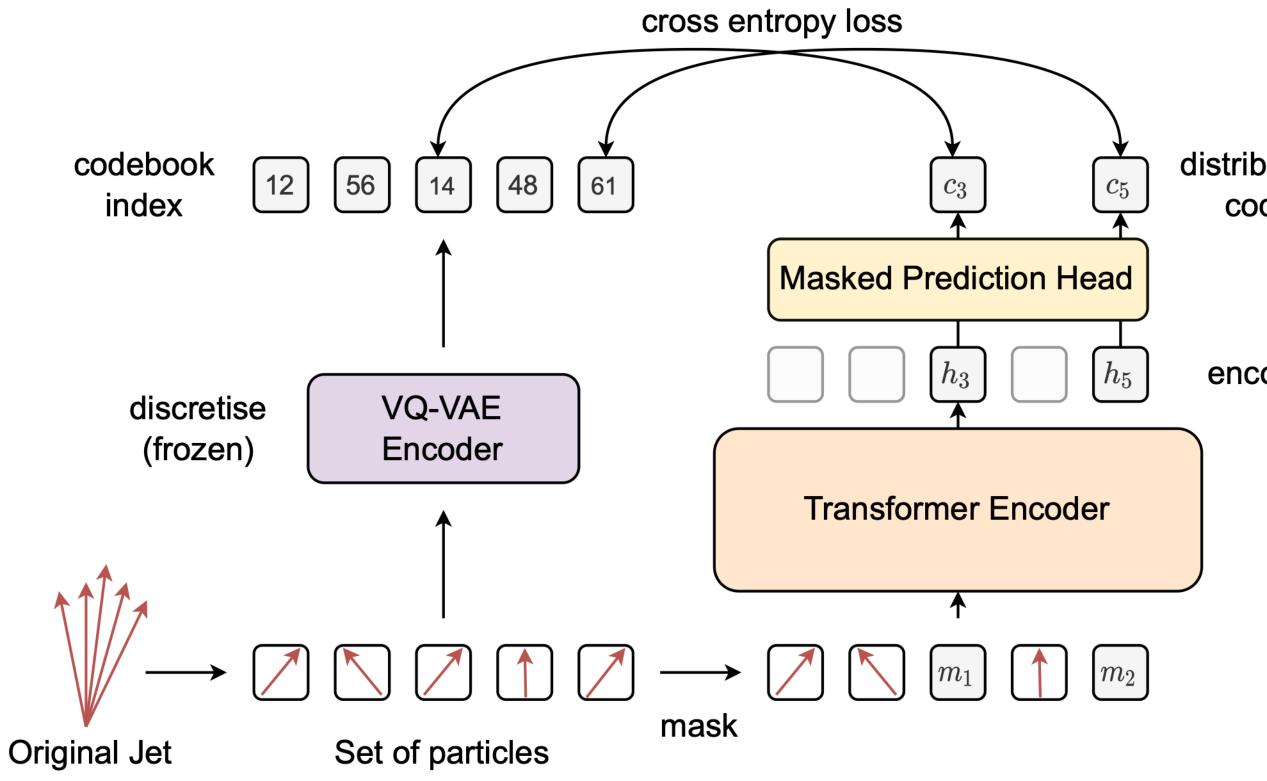
encodings

- Like language: 'meaningful' constituents
- Like images: continuous inputs



distribution over codebook

- Like language: 'meaningful' constituents
- Like images: continuous inputs
- Unlike both: no positional information



distribution over codebook

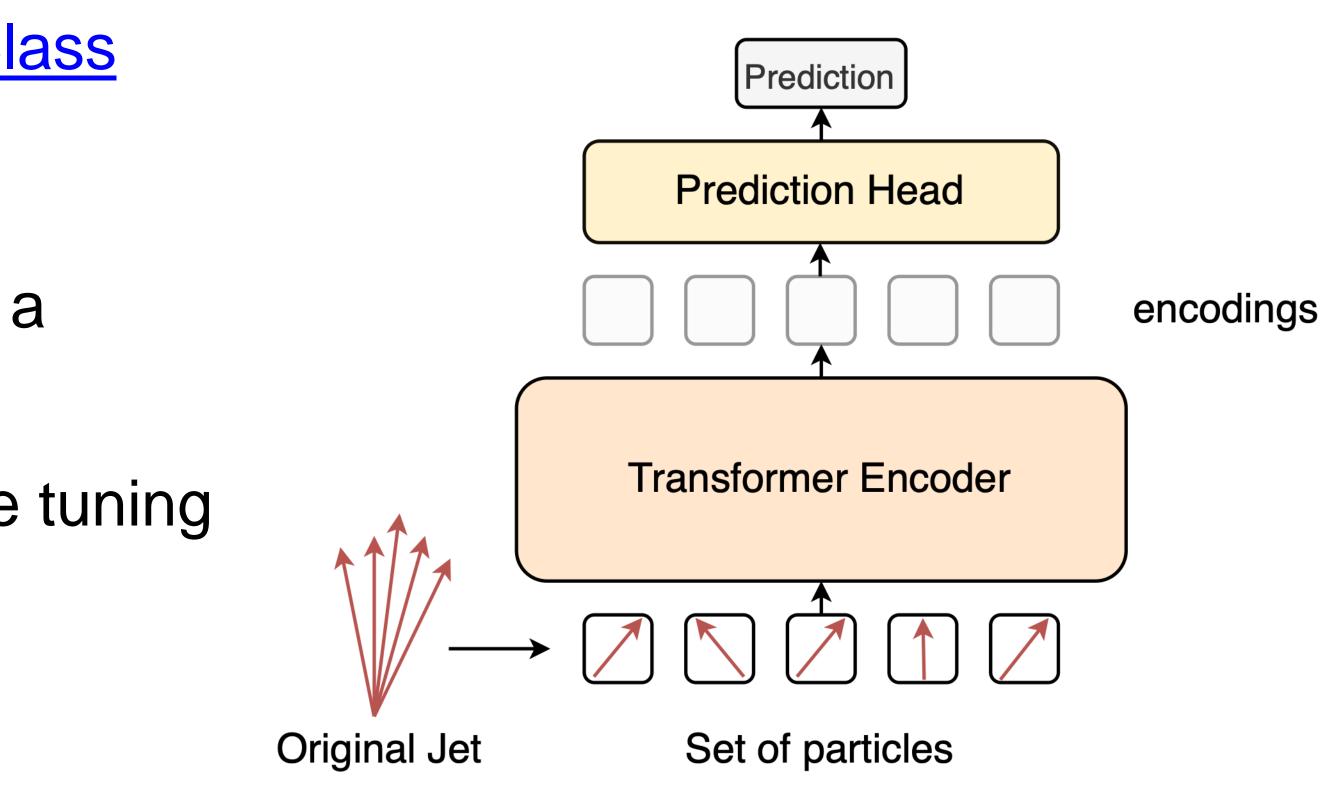
encodings

Masked modelling Strengths

- Very simple training objective and data pipeline yet
- Proven to be very effective in NLP and computer vision
- Requires no augmentation / re-simulation
- Can train the backbone <u>directly on data</u>
 - Pretraining at unprecedented scale

Masked modelling Performance

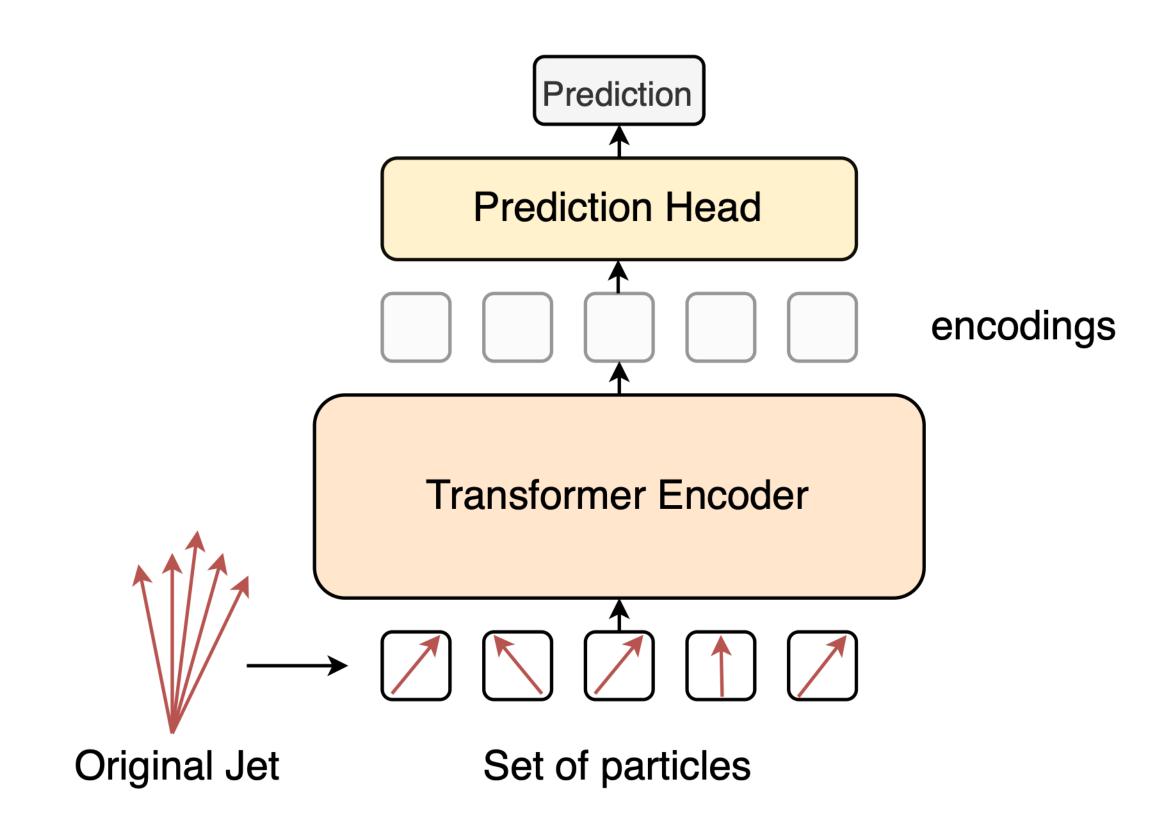
- Pretraining on 100M Jets from <u>JetClass</u>
 - 10 classes
- How to quantify the performance of a pretrained model?
 - Array of downstream tasks fine tuning



Masked modelling

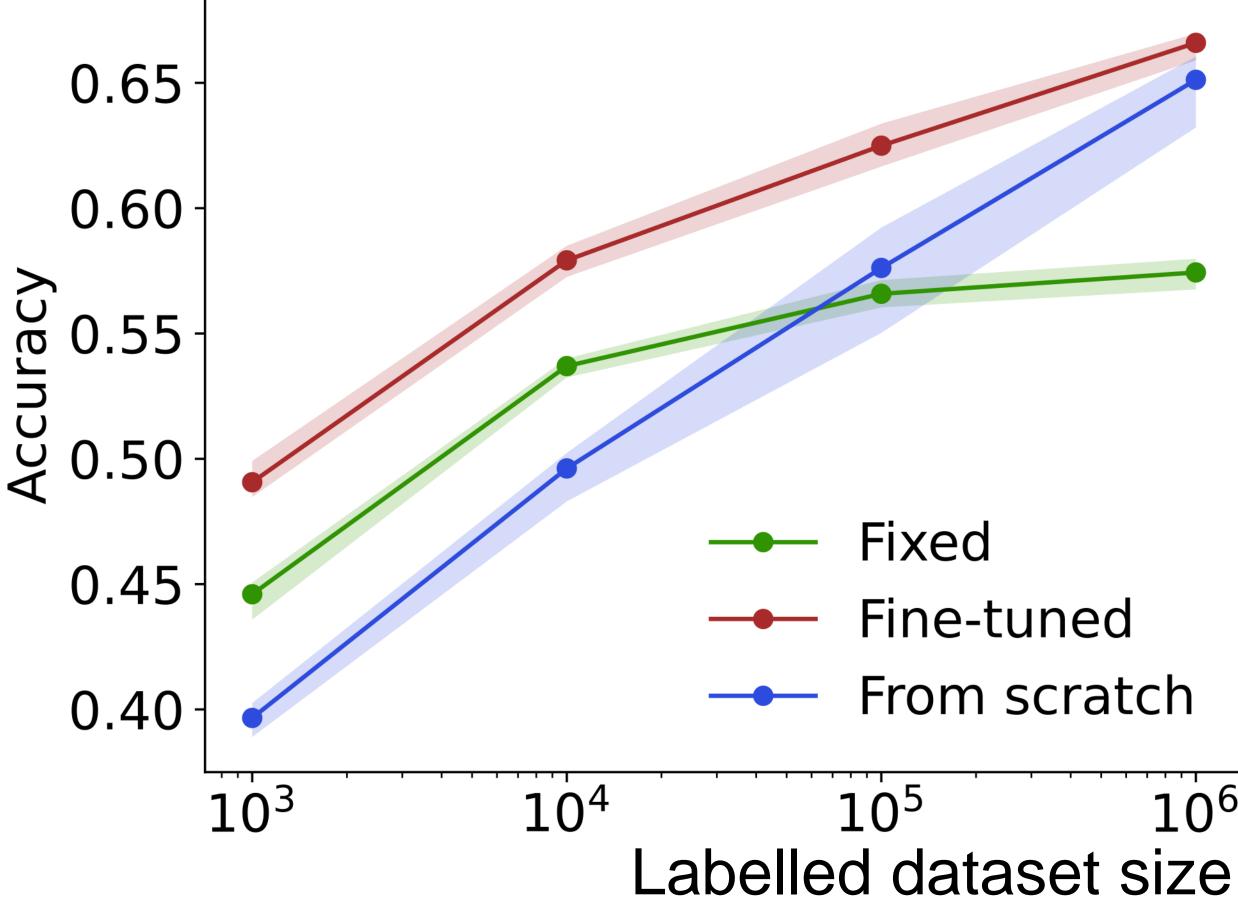
Downstream training strategies

- Train encoder and head
 Fine-Tuned
- Freeze encoder, only train head
 Fixed
- Reinitialize model, train from scratch
 From scratch



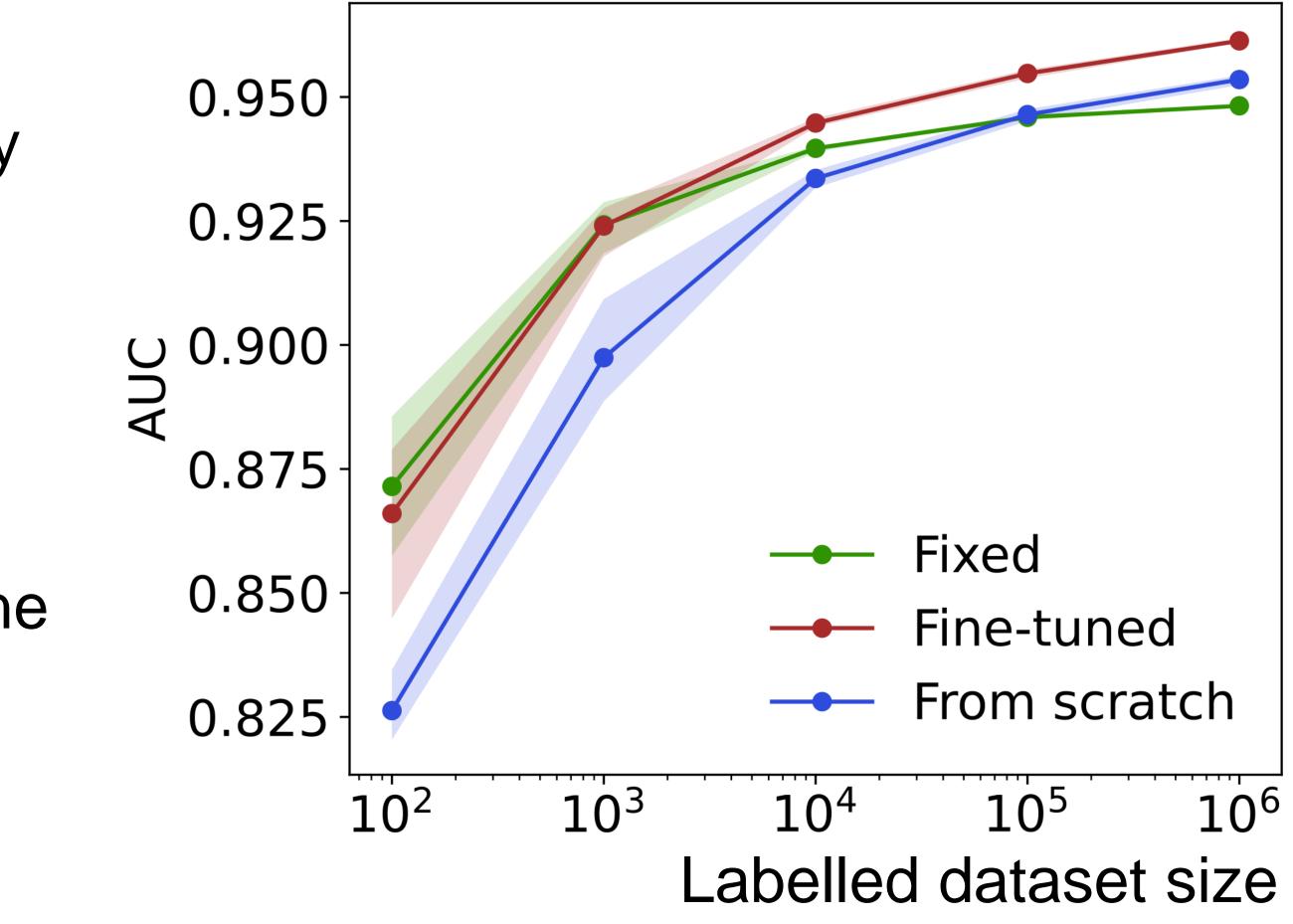
Masked modelling Fine tune on pretraining set

- Select N events and fine tune
- The backbone model outperforms from scratch
 - 10x more data efficient at 60%
- For reference ParT on full 10⁸ samples gets around 85%



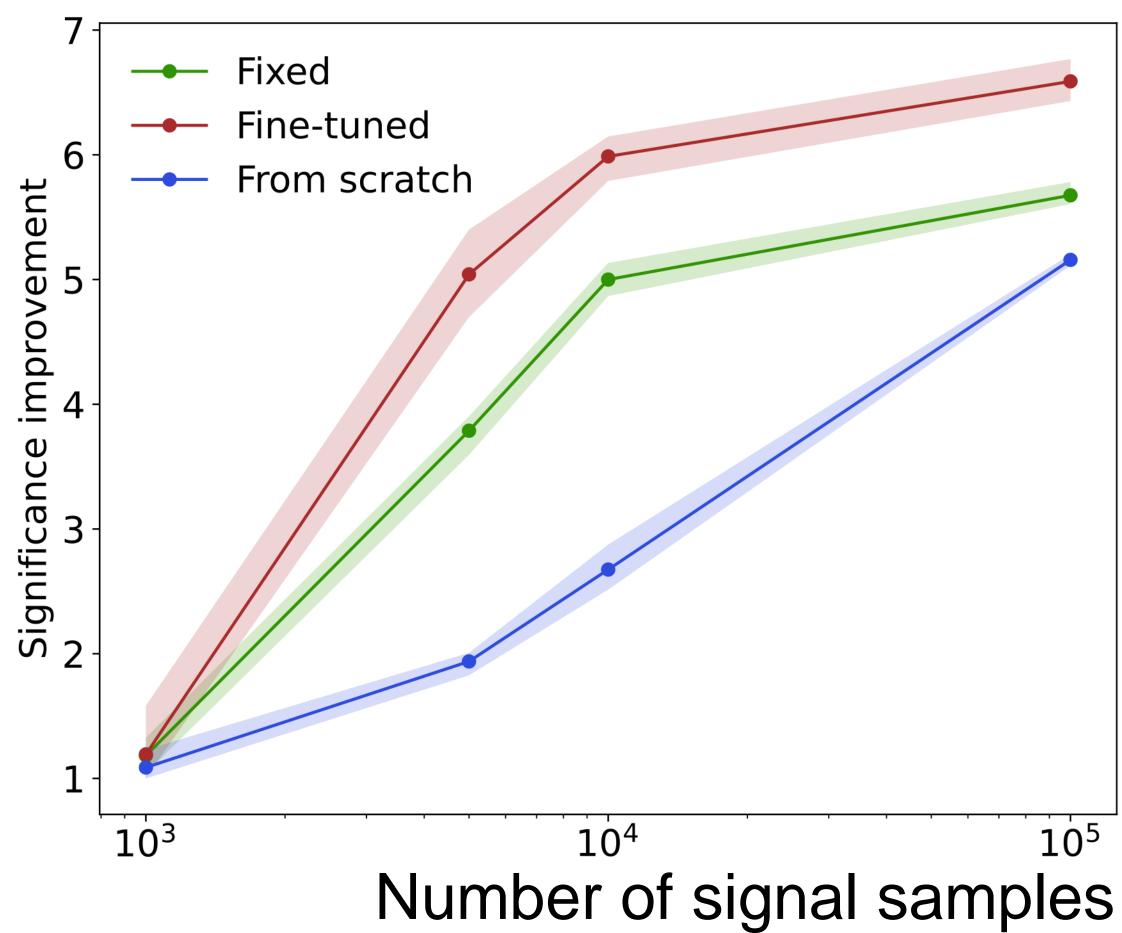
Masked modelling Fine tune on new dataset

- The learned features are generically useful
- The performance gain applies to data generated with a different simulator
 - Change card to Atlas and fine-tune (JetClass is CMS)



Masked modelling Fine tune on weak supervision

- Fine tuning with CWoLa
 - Take two QCD samples
 - Add x top jets to one sample and label 'signal'
 - Fine-tune model on noisy labels



16

Summary Masked particle modelling

- Masked particle modelling is a very useful pretraining task for HEP
- Shows great promise in example downstream classification tasks
 - More data efficient
 - Ability to extrapolate to new datasets
 - Better performance in weak supervision
- More to come!

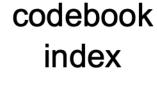
17

Thank You

Backup

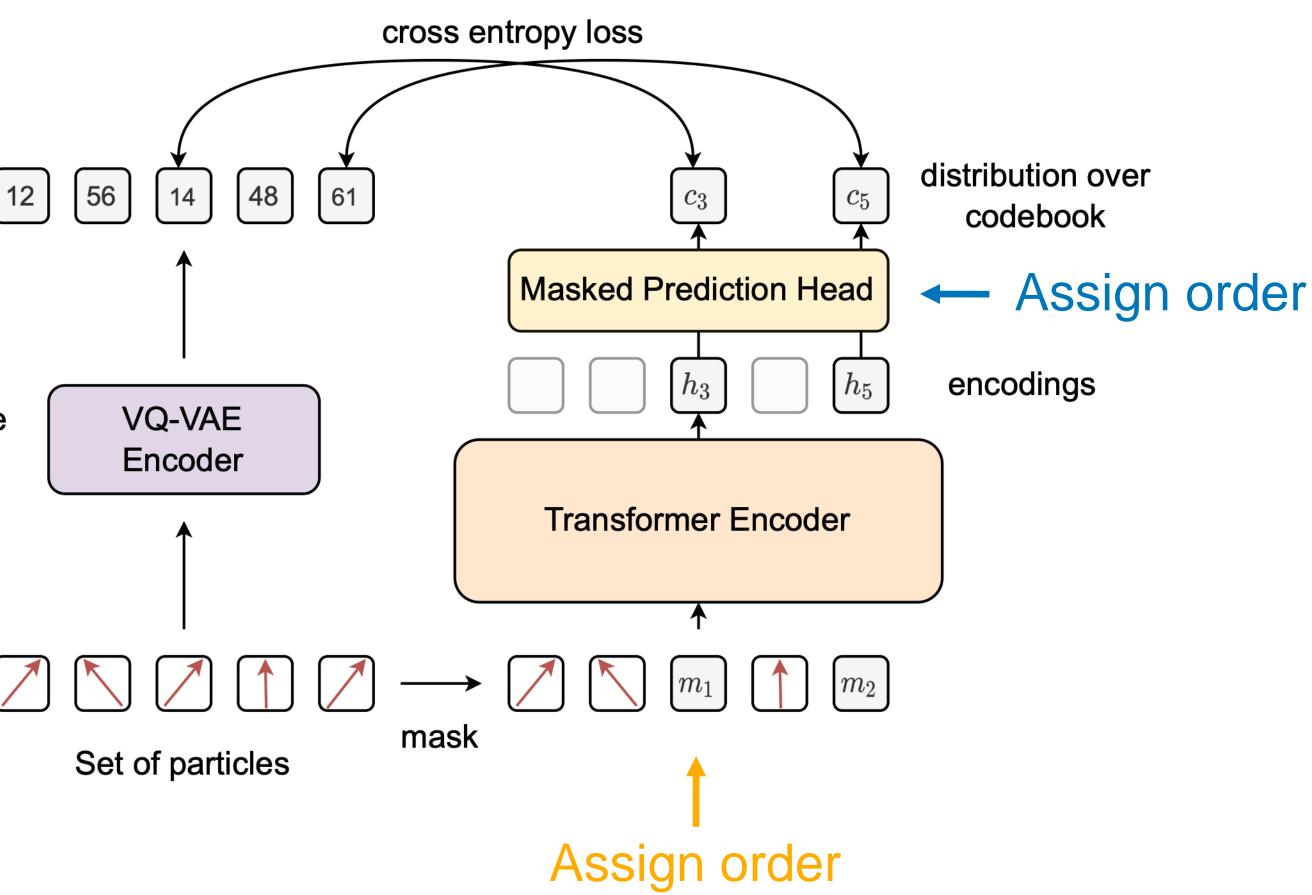
Masked modelling **Permutation invariance**

- Three approaches to permutation invariance
 - Don't worry about it
 - Input to backbone
 - Input to masked prediction head



discretise (frozen)

Original Jet



Masked modelling **Permutation invariance**

- Three approaches to permutation invariance
 - Don't worry about it
 - Input to backbone
 - Input to masked prediction head

