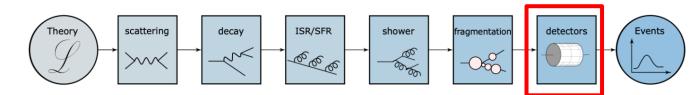


Latent Generative Model for Calorimeter Fast Simulation

Qibin LIU, Chase Shimmin, Xiulong LIU, Eli Shlizerman, Shih-Chieh HSU, Shu LI

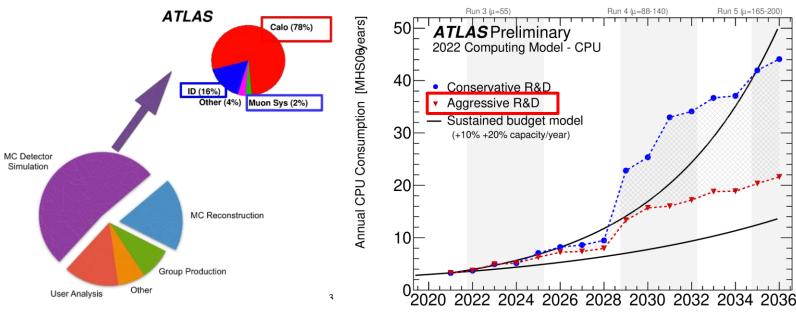
Introduction

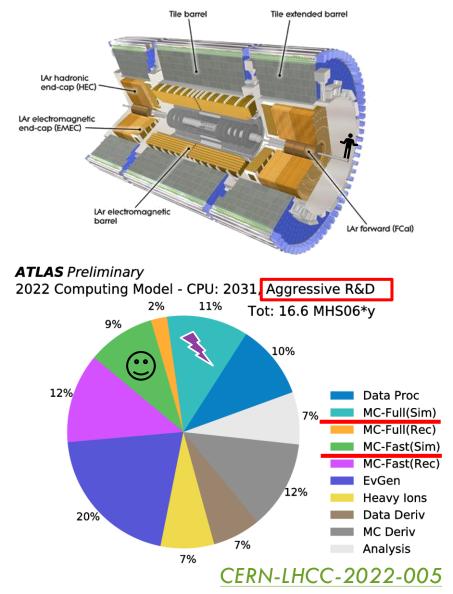


Year

Important step in the HEP workflow: Detector Simulation
Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460]

- Calorimeter: "largest" part both in scale and computing cost
- Fast Simulation: most wanted and mandatory in the future
- >Ultra-fast and scalable solution: latent generative model
- Implementations on CaloChallenge2022 datasets





Introduction



Tile barrel

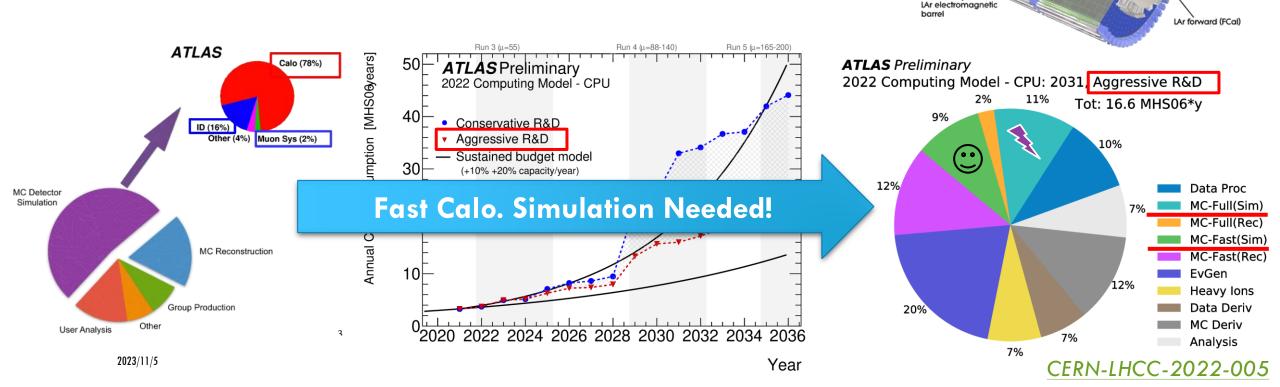
Tile extended barrel

Machine Learning and LHC Event Generation, A. Butter et al. [2203.07460] Important step in the HEP workflow: Detector Simulation

> LAr hadronic end-cap (HEC)

LAr electromagnetic end-cap (EMEC)

- Calorimeter: "largest" part both in scale and computing cost
- Fast Simulation: most wanted and mandatory in the future
- > Ultra-fast and scalable solution: latent generative model
- Implementations on CaloChallenge2022 datasets

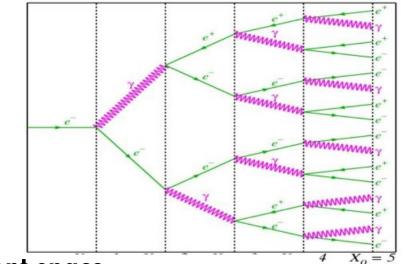


Simulation of Calorimeter

 \succ Simulate hits \vec{E} corresponding to each calo. readout channel

- Full simulation(GEANT4): Tracing of every secondary particle
- >Fast simulation: generate response in one/few pass(es)

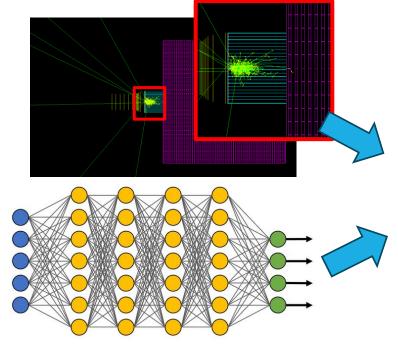
>VAE- based generative model: fast and well-controlled latent space



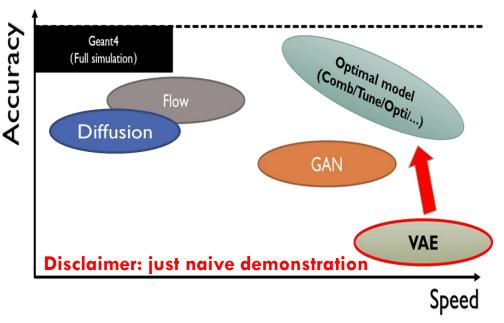
2015

Wermes

Kolanoski,

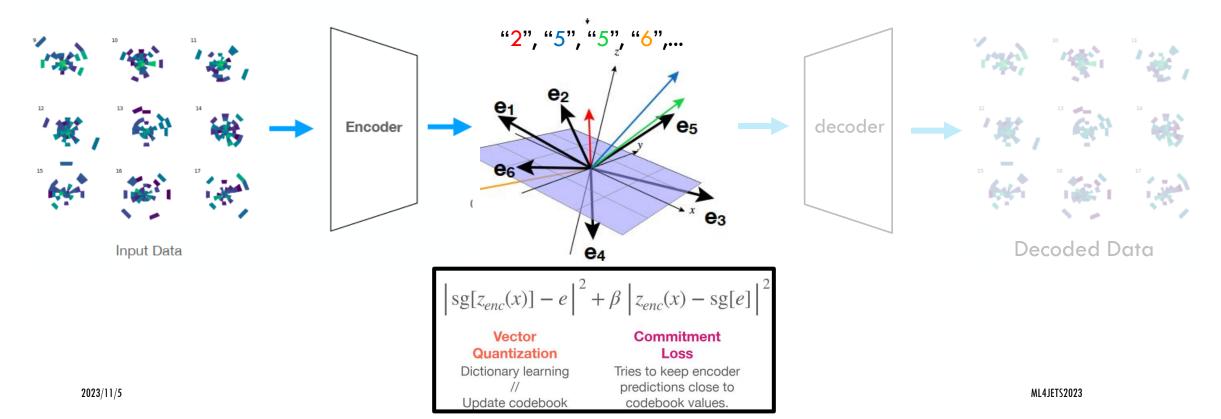


$$P(\vec{E_i}|E_{inc},type,...)$$



Two-Step Generative Model: *Encoding*

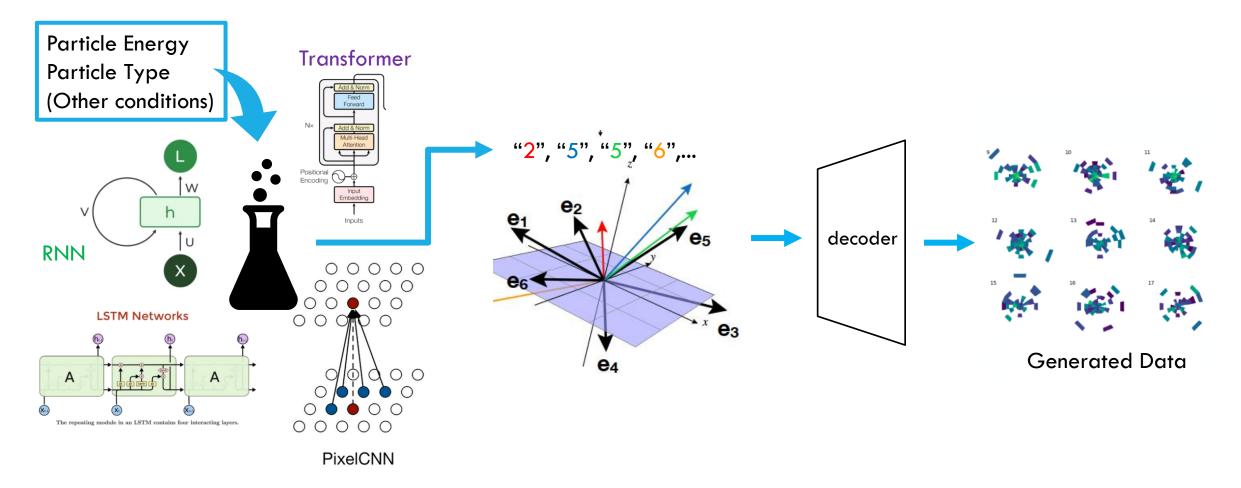
- Compress and encode the calo. data into latent space: "Auto-Encoder"
- Quantized the latent space into code with Vector Quantization [1711.00937]
- $ightarrow \mathbb{R}^{D}
 ightarrow \mathbb{Z}^{L}$: Large compression ratio ($D \gg L$) and more descriptive
- >Well defined objective and good scaling in general



Step

Two-Step Generative Model: Sampling

Latent (codes) sampled with token model: RNN/PixelCNN/Transformer...



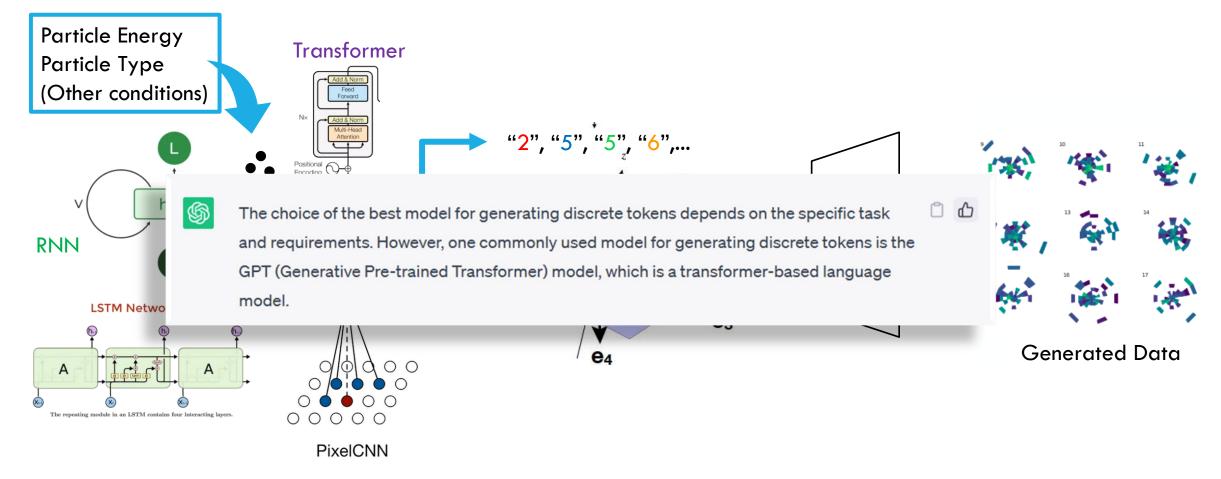
Figures sources: aishwarya.27, 1706.03762, Colah, 1601.06759

Step2

Two-Step Generative Model: Sampling

Latent (codes) sampled with token model: RNN/PixelCNN/Transformer...

Bridge to modern rapidly developed AI model: GPT (imp. <u>minGPT</u>)



Figures sources: aishwarya.27, 1706.03762, Colah, 1601.06759

Step

 $E_c = 20[GeV]$

2

8

 $\sum E_i = 18[GeV]$

2023/11/5

2

Dataset and Preprocessing

Common calo. dataset: <u>CaloChallenge2022</u>
Cylinder with 384~40500 channels
Particle incident energy E_c: GeV ~ TeV (γ, π, e)
Large dynamic range: KeV ~ GeV for each channel E_i
High sparsity: most channels empty and compressible
Preprocessing: Normalization & Log ⇔ SoftMax & Exp

Normalized by $\sum E_i$ Logarithm +Scaling

0.56

0.56

0.63 0.56

0.56

Sampled by Latent Model

Encoder Pass

0.56 0.78 0.63

0.56

0.06

0.11

0.06

0.11

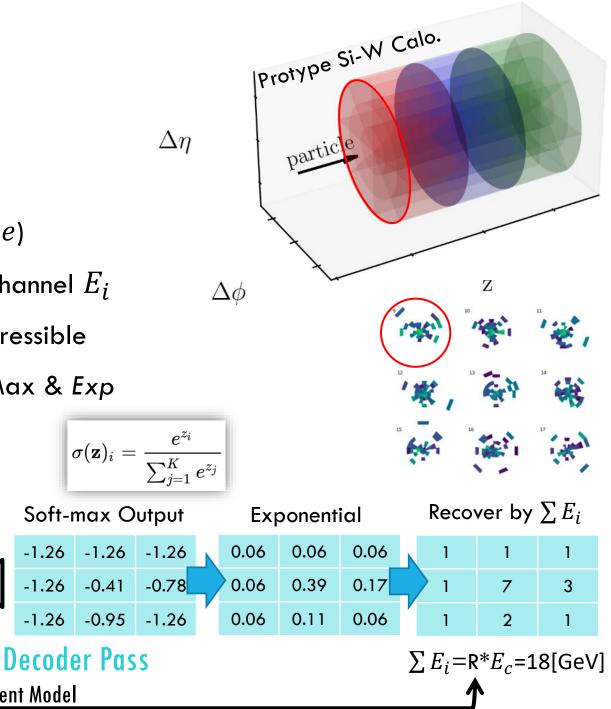
0.06

 $R\equiv \sum E_i/E_c=0.9$

0.06 0.44

0.06

0.06



Step1 Implementation: VQGAN

>VQVAE combined with adversary trained discriminator (VQGAN)

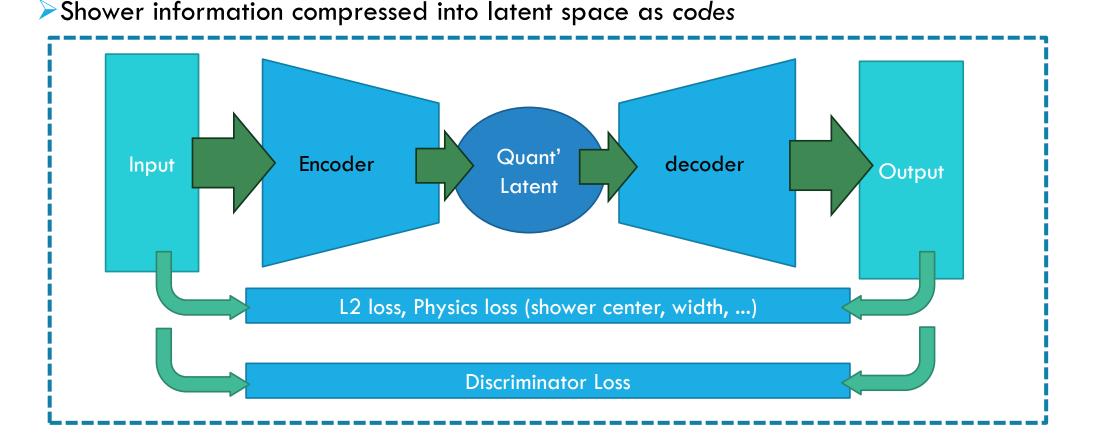
Pixel-wise loss: L2 (MSE) loss comparing input and decoded

Physics-aware loss: shower center and width difference,...

 $|\boldsymbol{\eta}\cdot(\boldsymbol{E}'-\boldsymbol{E})|$

 $Q^* = \underset{E,G,\mathcal{Z}}{\operatorname{arg\,min}} \max_{D} \mathbb{E}_{x \sim p(x)} \Big[\mathcal{L}_{VQ}(E,G,\mathcal{Z}) \Big]$

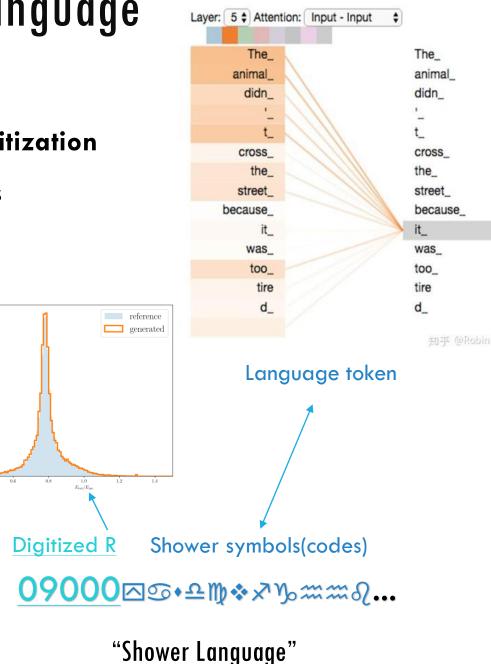
 $+\lambda \mathcal{L}_{\text{GAN}}(\{E,G,\mathcal{Z}\},D)$



Step2 Implementation: "Shower Language"

> Physical information embedded in the discrete tokens:
□ Total energy response R (∑E_i/E_c) encoded with digitization
□ Shower information (E_i/∑E_i) from Step1 output codes
> General for any specific calo. geometry, datasets, ...
> Sampled with token model: e.g. transformer

10



Performance on Small Dataset(π)

Small and irregular geometry: fully connected layers utilized Average shower: matches ground truth for all calo. layers Energy response: good agreement in wide energy range > Dist. of physics variables: $\langle S^2 \rangle$ reaching 0.01 level

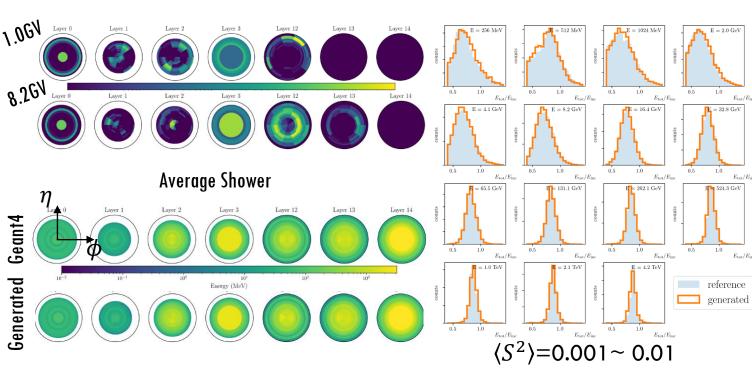
Arbitrary Generated Shower

Total Energy Response ($\Sigma E/Ec$)

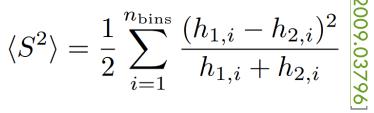
 E_{i-1}/E_{i-1}

 $E_{\rm tot}/E_{\rm inc}$

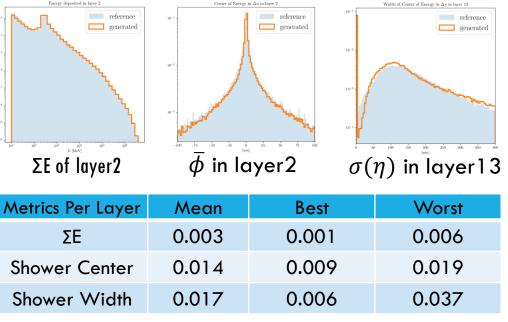
 $E_{\rm tot}/E_{\rm inc}$



Separation Power



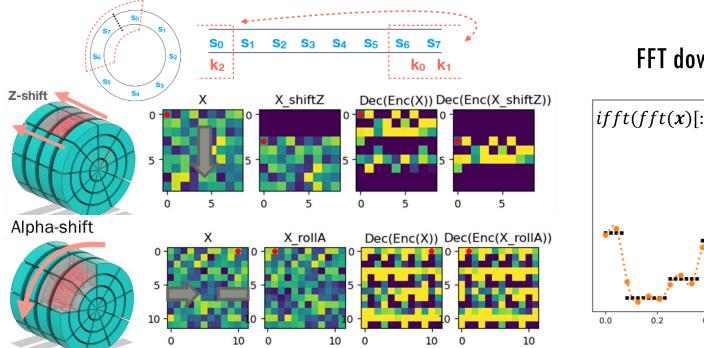
Selections of well-modelled distributions



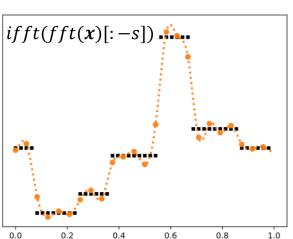
$\langle S^2 \rangle$ of All Variables

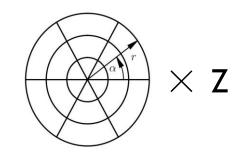
Scale to Large Dataset

- >Orthogonal segmentation: cylindrical convolution operator
- Equivariant down-/up- sampling: FFT resampling
- Residual and Attention: capture of long-range information
- \geq Layer-wise normalization: Σ E layer encoded into latent codes
- > Tricks of training: HPO, adaptive weight, ... and <u>patience</u>



FFT down-sampling



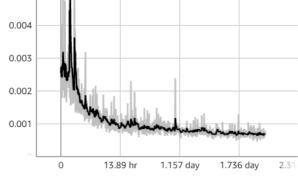


Datasets	Ch(Z)	Ch(α)	Ch(r)
"Easy"	5/7	(Irreg	jular)
"Medium"	45	16	9
"Hard"	45	50	18

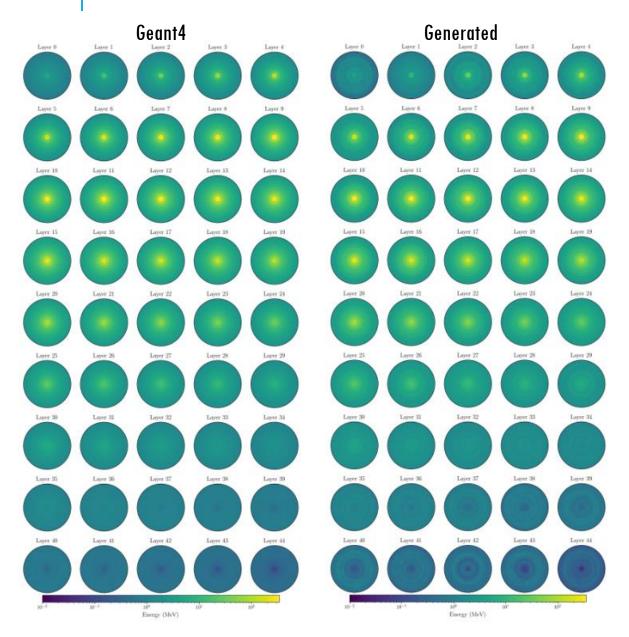
train/l2_loss

0.005

Typical Loss Curve



Scale to Large Dataset

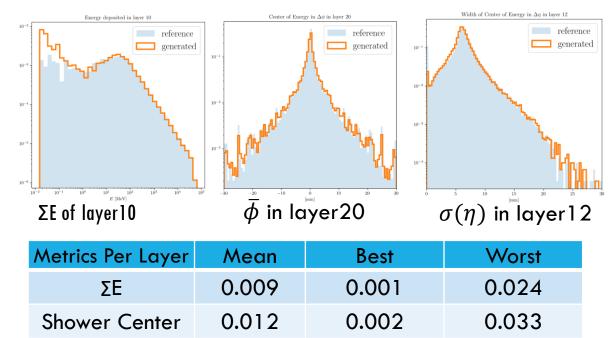


>In general good agreement with input

Shower Width

- >Not perfect at first and last several calo. layers
- ightarrow Higher sparsity, larger dynamic range, lower stats

Selections of well-modelled distributions



0.003

0.057

0.020

Scale to Large Dataset

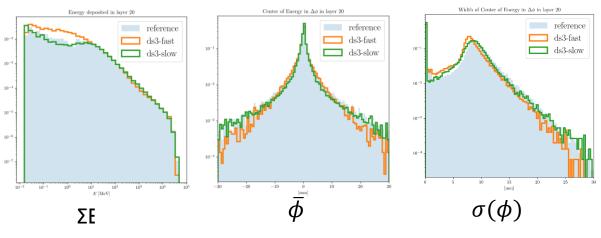
>2 models with different N#pars. and complexity

- $>\langle S^2 \rangle$ reaching 0.01 for energy response and 0.02 for shower shape
- >Generally good modelling of inner calo. layers

Arbitrary Generated Shower (162.28GeV)

		2	3	4	5	6	7	8
9	10	11	12	13	14	15	16	17
18	19	20	21	22	23	24	25	26
27	28	29	30	31	32	33	34	35
36,	37	38	³⁹	40	41	42	43	44

Distribution at Layer20



ds3-fast	Mean	Best	Worst
ΣΕ	0.021	0.002	0.130
Shower Center	0.024	0.003	0.076
Shower Width	0.044	0.004	0.133

ds3-slow	Mean	Best	Worst
ΣΕ	0.004	0.001	0.011
Shower Center	0.014	0.007	0.045
Shower Width	0.032	0.006	0.095

Performance Summary

Sampling time tested on1xV100 GPU with 512 showers/batch

Step1 (en/decoder) forward time at same level regardless of geometry

Step2 (transformer) dominated for the total sampling time

 $>\langle S^2 \rangle$ measured all the energy and shape variables of different calo. layers:

Best performed layers reach 0.001 and worst at 0.1 level

Model	Chan. (D)	S1 time/ms	S2 time/ms	Total time/ms	Latent Size (L)	Best $\langle S^2 \rangle$	Worst $\langle S^2 \rangle$
ds1-photon	368	0.02	0.23	0.25	42	0.001	0.023
ds1-pion	533	0.02	0.26	0.28	46	0.001	0.037
ds2	6480	0.17	0.46	0.63	70	0.001	0.057
ds3-fast	40500	0.35	0.79	1.14	184	0.002	0.133
ds3-slow	40500	1.7	34.4	36.1	274	0.001	0.095

Thinking of VAE model in Calorimeter Fast Simulation

Promising way to compress the high dimensional calo. data or scale other model:

However high demanding of engineering effort

Well-controlled and general latent space:

- Useful for downstream tasks, e.g. reconstruction
- Interplay with <u>foundation model</u>

Information bottleneck or "limitation":

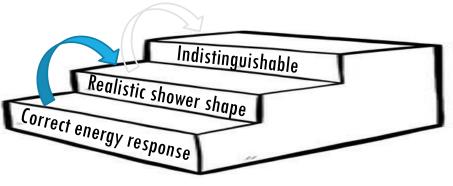
- More of less reduced the randomness and shorter "period"
- Higher compression, worse classifier score (easier to be caught)

Potential usage of a super-fast latent-labeled simulation model:

- On-the-fly testing of a real-time reconstruction system?
- "Deterministic" fast simulation (like a labeled image)?
- More ideas?

Various Step1 En/Decoder Models for Dataset3

Latent size L	AUC (50k cls-low)
140	0.9998
184	0.9962
274	0.9426
900	0.7876



Concluding

Calorimeter simulation is vital in HEP but computing-intensive

Machine learning methods show great potential for fast-calo-sim

Two steps model proposed based on VQVAE architecture

- Vector Quantization enabling well controlled compression and flexible latent space
- GPT model adapted to do the conditional sample in the latent space

Methods designed for calorimeter data:

Soft-max normalization, FFT resampling, cylindrical convolution

Performance on CaloChallenge datasets presented

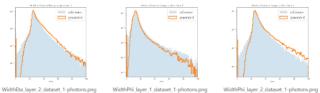
- Promising performance on averaging shower and distribution of key variables
- Ultra-fast generation and scaling dominated by latent model
- Quality of generated detail features not perfect: more study ongoing

Potential application of latent based ultra-fast calo. simulation

Thanks for your Attention!

18

Full Evaluations for Photon Dataset



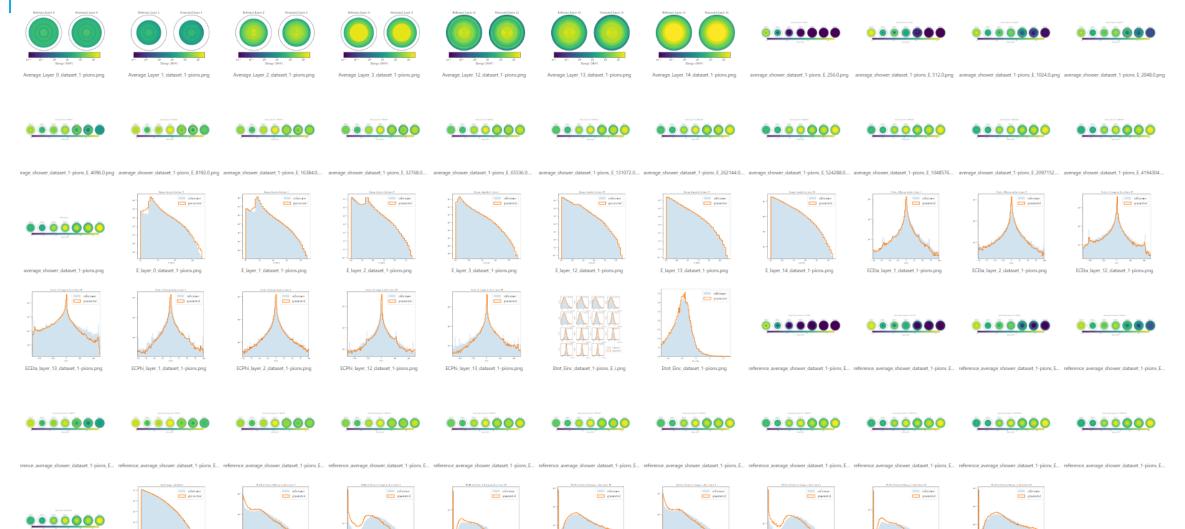
2023/11/5

Full Evaluations for Pion Dataset

WidthEta laver 1 dataset 1-pions.png

WidthEta laver 2 dataset 1-pions.png

WidthEta laver 12 dataset 1-pions.png



WidthEta laver 13 dataset 1-pions.png

WidthPhi laver 1 dataset 1-pions.png

WidthPhi laver 2 dataset 1-pions.png

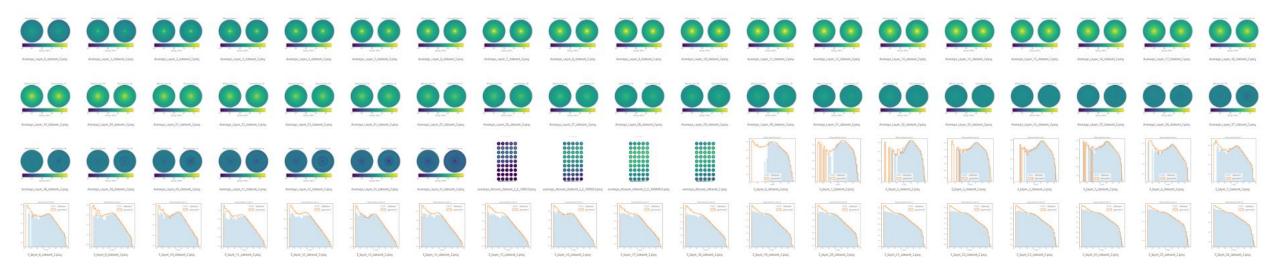
WidthPhi laver 12 dataset 1-pions.png

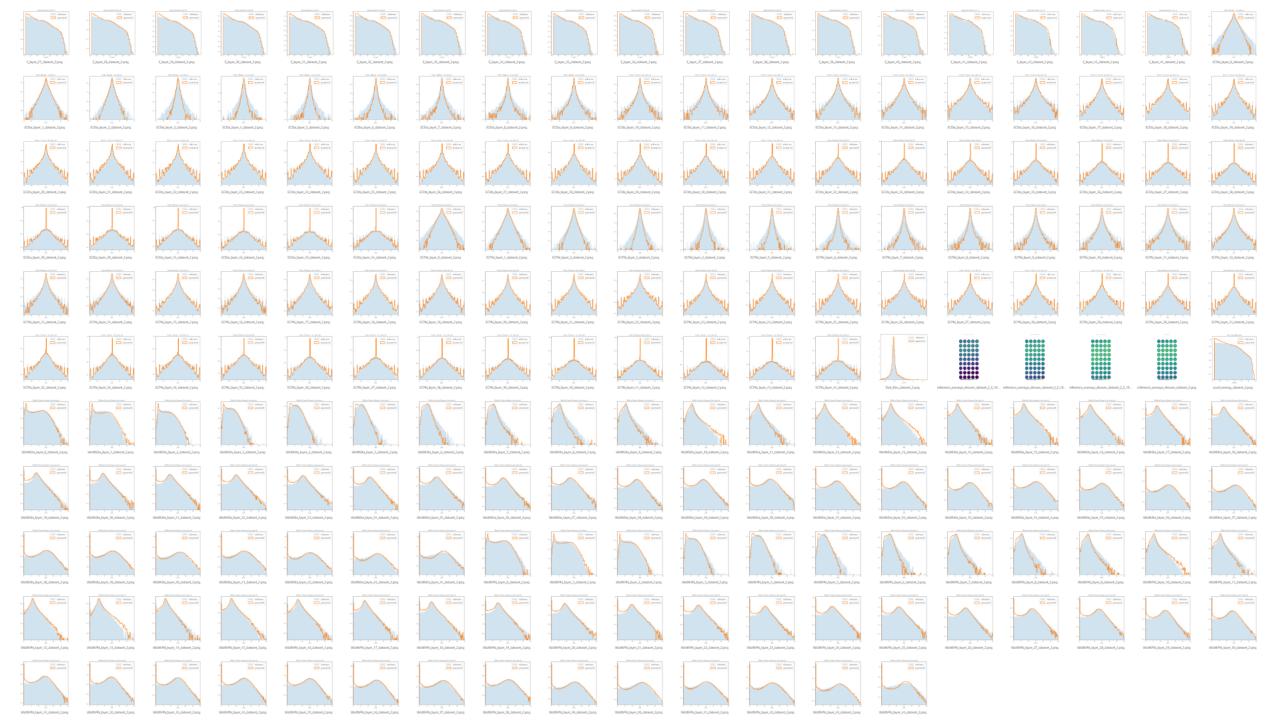
WidthPhi laver 13 dataset 1-pions.png

trence average shower dataset 1-pions.p.,.

vaxel energy dataset 1-pions.png

Full Evaluations for Dataset2





Full Evaluations for Dataset3 (slow model)

