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Introduction

➢Important step in the HEP workflow: Detector Simulation

➢Calorimeter: “largest” part both in scale and computing cost 

➢Fast Simulation: most wanted and mandatory in the future

➢Ultra-fast and scalable solution: latent generative model

➢Implementations on CaloChallenge2022 datasets
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Fast Calo. Simulation Needed!

http://cds.cern.ch/record/2802918


Simulation of  Calorimeter

𝑷(𝑬𝒊|𝑬𝒊𝒏𝒄, 𝒕𝒚𝒑𝒆, . . )

Disclaimer: just naive demonstration
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1 Shower on 45 layers calo.

➢Simulate hits 𝐸 corresponding to each calo. readout channel

➢Full simulation(GEANT4): Tracing of every secondary particle

➢Fast simulation: generate response in one/few pass(es)

➢VAE- based generative model: fast and well-controlled latent space



Two-Step Generative Model: Encoding
5

2023/11/5 ML4JETS2023

“2”, “5”, “5”, “6”,...

Decoded Data

decoder

➢Compress and encode the calo. data into latent space: “Auto-Encoder”

➢Quantized the latent space into code with Vector Quantization [1711.00937]

➢ℝ𝐷
→ ℤ𝐿: Large compression ratio (𝐷 ≫ 𝐿) and more descriptive

➢Well defined objective and good scaling in general

Step1

https://arxiv.org/abs/1711.00937


Two-Step Generative Model: Sampling

➢Latent (codes) sampled with token model: RNN/PixelCNN/Transformer...
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Two-Step Generative Model: Sampling

➢Latent (codes) sampled with token model: RNN/PixelCNN/Transformer...

➢Bridge to modern rapidly developed AI model: GPT (imp. minGPT)
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https://github.com/karpathy/minGPT


Dataset and Preprocessing

➢Common calo. dataset: CaloChallenge2022

Cylinder with 384~40500 channels

Particle incident energy 𝐸𝑐 : GeV ~ TeV (𝛾, 𝜋, 𝑒)

Large dynamic range: KeV ~ GeV for each channel 𝐸𝑖

High sparsity: most channels empty and compressible

➢Preprocessing: Normalization & Log⟺ SoftMax & Exp

2023/11/5
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Encoder Pass Decoder Pass
Sampled by Latent Model

https://calochallenge.github.io/homepage/


Step1 Implementation: VQGAN

➢VQVAE combined with adversary trained discriminator (VQGAN) 

Pixel-wise loss: L2 (MSE) loss comparing input and decoded

Physics-aware loss: shower center and width difference,...

➢Shower information compressed into latent space as codes
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Quant’

Latent

Stage2

Input Output Encoder decoder

L2 loss, Physics loss (shower center, width, ...)

Discriminator Loss

𝑬′ − 𝑬 2

𝜙

𝜂

𝜼 ⋅ (𝑬′ − 𝑬)

https://arxiv.org/abs/2012.09841


Step2 Implementation: “Shower Language”

➢Physical information embedded in the discrete tokens:

Total energy response R ( σ𝐸𝑖/𝐸𝑐) encoded with digitization

Shower information (𝐸𝑖/σ𝐸𝑖) from Step1 output codes

➢General for any specific calo. geometry, datasets, ...

➢Sampled with token model: e.g. transformer
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“Shower Language”

09000yasdcvfghhb...

Digitized R Shower symbols(codes)

Language token

Calo. Data



➢Small and irregular geometry: fully connected layers utilized

➢Average shower: matches ground truth for all calo. layers

➢Energy response: good agreement in wide energy range

➢Dist. of physics variables: 𝑆2 reaching 0.01 level

Performance on Small Dataset(𝜋)
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Metrics Per Layer Mean Best Worst

ΣE 0.003 0.001 0.006

Shower Center 0.014 0.009 0.019

Shower Width 0.017 0.006 0.037

𝑆2 of  All Variables

Total Energy Response (ΣE/Ec)

𝑆2 =0.001~ 0.01

ΣE of  layer2 ത𝜙 in layer2
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Selections of  well-modelled distributions

Separation Power

Arbitrary Generated Shower

https://arxiv.org/abs/2009.03796


Scale to Large Dataset

➢Orthogonal segmentation: cylindrical convolution operator

➢Equivariant down-/up- sampling: FFT resampling

➢Residual and Attention: capture of long-range information

➢Layer-wise normalization: ΣE layer encoded into latent codes

➢Tricks of training: HPO, adaptive weight, ... and patience
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Datasets Ch(Z) Ch(α) Ch(r)

“Easy” 5/7 (Irregular)

“Medium” 45 16 9

“Hard” 45 50 18

× Z

Typical Loss Curve

𝑖𝑓𝑓𝑡(𝑓𝑓𝑡(𝒙)[: −𝑠])

FFT down-sampling



Scale to Large Dataset
13
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Metrics Per Layer Mean Best Worst

ΣE 0.009 0.001 0.024

Shower Center 0.012 0.002 0.033

Shower Width 0.020 0.003 0.057

GeneratedGeant4

Selections of  well-modelled distributions

ΣE of  layer10 ത𝜙 in layer20 𝜎(𝜂) in layer12

➢In general good agreement with input

➢Not perfect at first and last several calo. layers

→ Higher sparsity, larger dynamic range, lower stats

𝐷 = 𝟔𝟒𝟖𝟎



Scale to Large Dataset
14 𝐷 = 𝟒𝟎𝟓𝟎𝟎

ds3-slow Mean Best Worst

ΣE 0.004 0.001 0.011

Shower Center 0.014 0.007 0.045

Shower Width 0.032 0.006 0.095

ds3-fast Mean Best Worst

ΣE 0.021 0.002 0.130

Shower Center 0.024 0.003 0.076

Shower Width 0.044 0.004 0.133

Distribution at Layer20

Arbitrary Generated Shower (162.28GeV)

➢2 models with different N#pars. and complexity

➢ 𝑆2 reaching 0.01 for energy response and 0.02 
for shower shape

➢Generally good modelling of inner calo. layers

ΣE
ത𝜙 𝜎(𝜙)



Performance Summary

➢Sampling time tested on1xV100 GPU with 512 showers/batch

Step1 (en/decoder) forward time at same level regardless of geometry

Step2 (transformer) dominated for the total sampling time

➢ 𝑆2 measured all the energy and shape variables of different calo. layers:

➢Best performed layers reach 0.001 and worst at 0.1 level
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Model Chan. (D)
S1 

time/ms

S2 

time/ms

Total 

time/ms
Latent Size (L) Best 𝑆2 Worst 𝑆2

ds1-photon 368 0.02 0.23 0.25 42 0.001 0.023

ds1-pion 533 0.02 0.26 0.28 46 0.001 0.037

ds2 6480 0.17 0.46 0.63 70 0.001 0.057

ds3-fast 40500 0.35 0.79 1.14 184 0.002 0.133

ds3-slow 40500 1.7 34.4 36.1 274 0.001 0.095



Thinking of  VAE model in Calorimeter Fast Simulation

Promising way to compress the high dimensional calo. data or scale other model:

 However high demanding of engineering effort

Well-controlled and general latent space:

 Useful for downstream tasks, e.g. reconstruction

 Interplay with  foundation model 

Information bottleneck or “limitation”:

 More of less reduced the randomness and shorter “period”

 Higher compression, worse classifier score (easier to be caught)

Potential usage of a super-fast latent-labeled simulation model:

 On-the-fly testing of a real-time reconstruction system?

 “Deterministic” fast simulation (like a labeled image)?

 More ideas?
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Latent size |L| AUC (50k cls-low)

140 0.9998

184 0.9962

274 0.9426

900 0.7876

Various Step1 En/Decoder Models for Dataset3

https://indico.cern.ch/event/1220966/


Concluding

Calorimeter simulation is vital in HEP but computing-intensive

Machine learning methods show great potential for fast-calo-sim 

Two steps model proposed based on VQVAE architecture

 Vector Quantization enabling well controlled compression and flexible latent space

 GPT model adapted to do the conditional sample in the latent space

Methods designed for calorimeter data:

 Soft-max normalization, FFT resampling, cylindrical convolution

Performance on CaloChallenge datasets presented

 Promising performance on averaging shower and distribution of key variables

 Ultra-fast generation and scaling dominated by latent model

 Quality of generated detail features not perfect: more study ongoing

Potential application of latent based ultra-fast calo. simulation
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Thanks for your Attention!
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Full Evaluations for Photon Dataset
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Full Evaluations for Pion Dataset
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Full Evaluations for Dataset2
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Full Evaluations for Dataset3 (slow model)
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