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Introduction & Setup
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Motivation

I Classic search approaches

: Very sensitive searches for specific new physics models
: Less sensitive signal model agnostic searches, e.g. resonance searches

I Our goal: Improve sensitivity of model agnostic searches

: Reason for lacking sensitivity: often only performed in one variable
: Use pattern recognition capability of machine learning in high dimensional

feature space to gain higher sensitivity
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Weakly Supervised Classification

I Optimal classifier

Roptimal(x) =
pS(x)

pB(x)
, (1)

with pS=B signal and background densities.

I Classifier of mixed datasets

pi (x) = fi pS(x) + (1− fi ) pB(x) (2)

gives likelihood ratio

Rmixed =
f1 Roptimal(x) + (1− f1)

f2 Roptimal(x) + (1− f2)
. (3)

: Monotonically increasing function of
Roptimal(x) as long as f1 > f2.

: Weakly supervised classifier / CWOLA

[1708.02949]

Classifier
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How can weak supervision be
applied to real data?

a.u.

mSB SR SB

x x x

Recreated from [2109.00546]

Bkg

template
SR

data

Classifier

Background template obtained through [1902.02634,
2001.05001, 2109.00546, 2203.09470, 2212.11285, ...]
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LHC Olympics R&D dataset [2101.08320]
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I Benchmark dataset for anomaly detection

I QCD dijet background

I Resonant signal of Z’→XY with
X/Y→qq

I m Z’ = 3.5TeV, mX = 0.5TeV,
mY = 0.1TeV

I Baseline features used for the
classification

: Resonant feature mJJ
: mJ1, ∆mJ , fi21,J1, fi21,J2

I SR: 0.4TeV bin around mZ′

I Inject 1000 signal events into dataset
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ML setup and baseline
performance

I NN: Fully connected NN with 3 hidden
layers of 64 nodes, trained using
Adam with learning rate 10−3

I BDT: Histogrammed Gradient
Boosted Decision Trees

I For both ensemble of 50
independently trained models with
randomized training-validation split of
50% used

I BDT shows median and 68% error
band of 10 runs, NN just one run
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Increasing the feature set size
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Increasing the feature set size

I Current baseline with 4 features is not model agnostic

I Ideally, want to move to low level features but neither classification nor density
estimation are easy in high dimensional space (but getting closer, see [2310.06897])

I Therefore, let’s first focus on more high-level features:

: Here, BDTs are a natural choice

I In model agnostic setup, many features will not be informative for any particular
signal model

: Need to be robust against uninformative features
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Uninformative features

I Simulate uninformative features by adding N Gaussian distributed noise features
to baseline feature set

I NN performance drops significantly already with N = 2

I BDT performance remains stable up to 10 Gaussian features
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Physically motivated feature sets

I As sensitivity reaches higher number of features, we can include more physics
features in an analysis

I Test by including additional subjettiness based features

: Information content increases towards bottom of table
: Higher subjettiness ratios essentially uninformative (extended set 1)
: Subjettinesses all slightly informative (extended sets 2 & 3)

Name # features Features

Baseline 4 {mJ1 , ∆mJ , fi
˛=1,J1
21 , fi˛=1,J2

21 }

Extended 1 10 {mJ1 , ∆mJ , fi
˛=1,J1
N,N−1 , fi

˛=1,J2
N,N−1} for 2 ≤ N ≤ 5

Extended 2 12 {mJ1 , ∆mJ , fi
˛=1,J1
N , fi˛=1,J2

N } for N ≤ 5

Extended 3 56 {mJ1 , ∆mJ , fi
˛,J1
N , fi˛,J2N } for N ≤ 9 and ˛ ∈ {0.5, 1, 2}
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Results for different feature sets

I BDT is well behaved with respect to information content of input feature set

I NN’s sensitivity to uninformative features leads to large performance drop for
extended set 1
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Results for a different signal model

I Being able to use more features increases the sensitivity to other signal models

I Test this by considering resonant signal of Z’→XY with X/Y→qqq
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Signal number change

I Sensitivity to low signal strengths
important for effectiveness of
analysis

I On baseline set similar results
observed for both NN and BDT

I Sensitivity of extended set 3 extends
to lower signal injections
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Conclusion

Summary

I BDTs are robust against uninformative features in the weakly supervised setup

I BDTs are well behaved with respect to the information content of an input set

: Ability to use larger input feature sets in an analysis

I Larger input feature sets allow for more model agnosticity

Outlook

I Apply BDT classifier to methods defining the background template from data
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Backup slides
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2D scan
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Ensembling
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Rotational invariance
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Model choice
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