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Classic search approaches
-> Very sensitive searches for specific new physics models
> Less sensitive signal model agnostic searches, e.g. resonance searches
Our goal: Improve sensitivity of model agnostic searches
- Reason for lacking sensitivity: often only performed in one variable
- Use pattern recognition capability of machine learning in high dimensional
feature space to gain higher sensitivity
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Weakly Supervised Classification

Optimal classifier

ps(x) ' )
pa(x)

with ps,g signal and background densities.

RoptimaI(X) =

Classifier of mixed datasets

pi(x) = fips(x) + (1 = fi) pa(x) (2
gives likelihood ratio
fi Roptimal (x) + (1 — f1)
f2 Roptimal (x) + (1 — f2)
- Monotonically increasing function of

Roptimal(x) @s long as f; > f,.
> Weakly supervised classifier / CWOLA

@)

Rmixed =
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How can weak supervision be K e
applied to real data?

a.u. template data
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LHC Olympics R&D dataset
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Benchmark dataset for anomaly detection
QCD dijet background
Resonant signal of Z’' — XY with
XY = qq
mz =3.5TeV, mx =0.5TeV,
my = 0.1TeV
Baseline features used for the
classification

> Resonant feature my

> my1, Amy, T21,1, T21,02
SR: 0.4 TeV bin around my

Inject 1000 signal events into dataset


https://zenodo.org/records/6466204
https://arxiv.org/abs/2101.08320

ML setup and baseline
performance

NN: Fully connected NN with 3 hidden
layers of 64 nodes, trained using
Adam with learning rate 103

BDT: Histogrammed Gradient
Boosted Decision Trees

For both ensemble of 50
independently trained models with
randomized training-validation split of
50% used

BDT shows median and 68% error
band of 10 runs, NN just one run
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—— Supervised BDT

Supervised NN

— IAD BDT
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Increasing the feature set size

Back to the Roots
Y8l Marie Hein — November 8, 2023



Institute for

Increasing the feature set size TIK Rt

and Cosmology

Current baseline with 4 features is not model agnostic
Ideally, want to move to low level features but neither classification nor density
estimation are easy in high dimensional space (but getting closer, see )
Therefore, let’s first focus on more high-level features:

-> Here, BDTs are a natural choice
In model agnostic setup, many features will not be informative for any particular
signal model

> Need to be robust against uninformative features
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Uninformative features

T

Simulate uninformative features by adding N Gaussian distributed noise features
to baseline feature set

NN performance drops significantly already with N = 2

BDT performance remains stable up to 10 Gaussian features
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As sensitivity reaches higher number of features, we can include more physics
features in an analysis
Test by including additional subjettiness based features

> Information content increases towards bottom of table

- Higher subjettiness ratios essentially uninformative (extended set 1)

- Subjettinesses all slightly informative (extended sets 2 & 3)

Name # features | Features
Baseline 4 {my,, Amy, Tﬁzl'Jl, ‘rﬁ:l’b}
Extended 1 10 {my,, Amy, —rf,:,\}j 'r,'\sl:,\}ﬁ} for2 < N<5
Extended 2 12 {my,, Amy, Tf,:l'Jl, T,'\S,:I’JZ} forN <5
Extended 3 56 {my,, Amy, 787 2821 for N < 9and g € {05,1,2}
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Results for different feature sets
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BDT is well behaved with respect to information content of input feature set

NN'’s sensitivity to uninformative features leads to large performance drop for

extended set 1
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Being able to use more features increases the sensitivity to other signal models

Test this by considering resonant signal of Z' — XY with X/Y — qqq
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Summary
BDTs are robust against uninformative features in the weakly supervised setup
BDTs are well behaved with respect to the information content of an input set
- Ability to use larger input feature sets in an analysis

Larger input feature sets allow for more model agnosticity

Outlook
Apply BDT classifier to methods defining the background template from data
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2D scan
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Ensembling
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Rotational invariance
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