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Long Lived Particles

Decays at a reconstructable
distance from the primary collision

or is quasi-stable on the scale of the
detector

Large
Mediator mc

Smaller couplir

Suppressed
phase space

Decay Products are delayed!

We already have LLPs in SM
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* A new long-lived parficle would be a clear sign of new physics but

often overlooked.

But challe
the [Imit.

- Long-lived particles appear in many BSM scenarios.

nging (exciting)! We need to push analysis fechniques to



One of the major challenges - Triggering displaced events at online stage
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Level-1 Trigger High Level Trigger
(750 KHz), FPGAS (7.5 KHz), CPU Farm




Motivation
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New Physics?
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Challenges

Triggers optimised for
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Challenges

Low latency

Level-1 Trigger L1: 12 us
(750 KHz), FPGAS "y

KLJY Implementation



Challenges

Level-1 Trigger

(750 KHz), FPGAS




Solution and future upgrades

Dedicated triggers optimised for displaced searches in High PU environment

ECAL fiming at L1 Cut based
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Dedicated Triggers for Displaced Jets using Timing Information from Electromagnetic Calorimeter at HL-LHC,
B. Bhattacherjee, T. Ghosh, R.Sengupta, PS, JHEP 08 (2022) 254




Solution and future upgrades

Search for Electroweakinos in R-Parity Violating SUSY with Long-Lived Particles at HL-LHC
B. Bhattacherjee, PS, 2308.05804



Solution and future upgrades

Dedicated triggers optimised for long lived particles in High PU environment

Extended tracking at L1
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Triggering long-lived particles in HL-LHC and the challenges in the first stage of the trigger system, B.
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Solution and future upgrades

Dedicated triggers optimised for long lived particles in High PU environment

MIP timing detector (MTD)
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Triggering long-lived particles in HL-LHC and the challenges in the first stage of the trigger system, B.
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Searching for light LLPs at L1 using ML

Unsupervised anomaly detection using message passing GNN

LLPNet: Graph Autoencoder for Triggering Light Long-Lived Particles at HL-LHC,
B. Bhattacherjee, P. Konar, V. S. Ngairangbam, PS, 2308.13611

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

LLPs produced through decay of 125
GeV Higgs boson :

We study LLP masses in range (10-50 :
GeV) with decay length (1-100 cm)
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Graph formation

e Graph is constructed using extended L1 tracks with reconstruction efficiency varying with impact parameter.

e For each event, neighbours are selected within a certain radius (r).

eTo calculate r, we take Into account initial position of tfracks in the spafial dimensions.

e Each node is associated with frack parameters.

*Each edge is associated with following edge features- Spatial separation, momentum and transverse momentum ratio.



Edge Convolution
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EdgeConv(10*2+3, 32)
EdgeConv(32*2, niat)

69 EdgeConv(niat*2, 32
! )
EdgeConv(32*2,10)
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i MSE score as anomaly score
%, ~ 6000 trainable parameters ¢
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Hyperparameter tfuning done on HPC for radius and latent space dimension
which led to three WPs in [R, L]: [0.9,6], [1,10],[0.6,8]



Rate calculation

* Not so straight forward as there can be overlap in phase space between different backgrounds.
e We “stitch” together minbias samples with QCD samples (which is divided in various bins lbased on
gen level momentum)[1]

RS RS 4
Minbias ﬁ 30-50 GeV ﬁ 50-75 GeV ﬁ ...........
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[1] Stitching Monte Carlo samples by Karl Ehataht and Christian Veelken, 2106.04360.



Rate calculation

 Weight of each event is then calculated using following formula-

F

J
Ninct + 25N X 5,

=
II

[ is the pp collision frequency.

i refers to the total number of events with Np;; + 1 minbias events, where Np; is the average PU
events in a collision.

e N;is the event count for the j"" p;

> bin, and n;is the number of inelastic pp inferactions in that pin.

«p; is the probability of a single inelastic collision in the j' pge”

bin, determined by comparing the

gen

cross-section for that bin 1o the cross-section without any p2= conditions.
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Future plans: ML on FPGAs
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Level-1 Trigger
(750 KHz), FPGAS

High Level Trigger

(7.5 KHz), CPU Farm
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Future plans: ML for dark sector

Emerging Jets

Displacement

0 Dark Jets Semi-visible Jefts 1

Invisible fraction



Future plans: ML @ future LLP detectors

Main collider detectors
CMS, ATLAS, LHCb, FCC-hh Forward LLP detectors

FOREHUNT, B. Bhattacherjee, H. K. Dreiner, N. Ghosh, S.
Maisumoto, R. Sengupta, PS, 2306.11803

rd>cr

ANUBIS <l

SHiP

Search for Hidden Particles



Conclusion

e FUture upgrades at phase-2 for L1 will open many avenues for BSM
searches especially for displaced physics.

* ML can offer efficient ways to utilise the information available at L1 to
frigger such events.

 We studied prospect of using ML based L1 frigger to select LLP events at
L1 by using a simple auto-encoder and constraining the background
rate.

e Further studies concerning FPGA implementation are imminent!
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Heterogenous Hypergraphs

Nodes

® Tracker
® Calorimeter

Hyperedges

e Better representations of event structure

e Combining Information from various subb-detectors to efficiently search
for BSM physics (e.g. MTD can provide valuable inputs for displaced
searches and PU mitigation)



Scenario-A Scenario-B Scenario-C
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« LLPs produced through decay of

125 GeV Higgs boson - Direct pair production of LLPs - Direct pair production of LLPs

decaying to two quarks each where LLP decays to three quarks

«  We study LLP masses in range (10-50
GeV) with decay length (1-500 cm)
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PU and Narrow lJets




Narrow lJets
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Tracklessness

Normalised
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Trackless jet trigger

At-least one jet with-

- R=0.2

9 « PT=60GeV
- BDT score corresponding to a background rejection of 98%
*  No other jet from the same z-vertex

)

&_\ Signal efficiency of = 60% for LLP with mass 100
@ GeV and 10 cm decay length with permissible

\Q background rates.
Q/*



ECAL Timing




ECAL Timing
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Timing resolution
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Background rate

Background event rate can be calculated as: %, = a(nb) X & (b~ 's™1) x €,

For more accurate calculation of background rate, look at: Stitching Monte Carlo samples by Karl Ehataht and Christian Veelken, 2106.04360.



Timing variables and background rate
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Signal efficiency
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Inclusion of displaced tracks information
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Improves signal efficiency for LLPs with
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Early runs
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C, high PU will have adverse effect on the timing of the displaced jets. Effect of the PU can be
uced by considering “narrow jets”.
based friggers constructed using t

racking and timing variables can select LLP events efficiently
‘ate within permission range.
ay a very important role constructing triggers based on L1 ECAL timing.

NT 1

Mming variables to be used at L1 for constructing fiming of the jet using ECAL inpufts
stant.

INg from QCD jefts is accurately calculated using “stitching method’.

ree LLP scenarios with various mass and decay length is calculated keeping

background rate under 30 KHz.
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Nng based triggers will work best during initial runs of HL-LHC when ECAL has better fiming resolution.
‘'ormance of fiming based friggers can be improved by including displaced track information where
N will compliment each other.

For detailed study, kindly have a look at:
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