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Current Status of Jet Taggers

In the yesterday’s experiment overview talk by

the current state-of-art jet taggers are neural networks
analyzing low level inputs (jet constituent features) directly.

Classification

arxiv:2202.03772

Kevin, we saw that

All classes H—-bb H—sce H—-gg H—49 H—lvgd [t—bggd\t—=blv W =qf Z—qq AnalySiS

Accuracy AUC Rejs00 Rejsog Rejsoy, Rejsoo, Rejggy, Rejsog Rejgg 5 Rejsoo, Rejso0
PEN 0.772 09714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2011 112 1185 3868 \17699/ 12987 384 311
~—
+ PELICAN

As a HEP theorist, one problem that | want to discuss:

Can we build up a high-level feature based
jet tagger equally performing well?

If we could do that, what are the advantages of such HLF based tagger?




Advantages of High Level Feature

based Jet Taggers

* Interpretable (by understanding HLF inputs)
« Advantages from Bias-Variance tradeoff

 Less training uncertainty
* Less sample demanding

 Faster in evaluation, memory efficient
 Simple networks (such as MLP) are sufficient.
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Anatomy of Top Jets

In order to build an high performing HLF based top jet tagger, we have to
build up HLFs capturing the all features of top jets completely.
What are the features of top jets?

Three-prong Color triplet Color triplet subjets
i
= =
— — ——
—% \\.‘ \\.‘

Top jet also have W boson jet inside.
Two-prong subjet inside Color connection Color singlet

B \\h. B \\h. B \\h.

We will introduce an analysis model combining HLF analyzing
architectures specialized for analyzing the above features.
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SHL, M. M. Nojiri, 1807.03312

TWO-pOi Nt energy A. Chakraborty, SHL, M. M. Nojiri,1904.02092

A. Chakraborty, SHL, M. M. Nojiri, M. Takeuchi,

correlation sgeotrum 2003.11787

Two-point energy correlation is an aggregated
energy correlation between two constituents at a distance R.
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IRC-safe energy correlator based
N eu ral N etWOrkS A. Chakraborty, SHL, M. M. Nojiri, Mz'oToagkﬁﬁg%

We use the two point correlation S2 as inputs to MLP.
The resulting network is called Relation Network,
a type of GNN using only edge features.

First linear layer: /dR So(R Z pr,ipT,;9° (Rij)

1,7€J

IRC-safe energy correlator

Graph Networks based Networks

Relation Network  |IMECERETIMI>| Relation Network |~~~ " "7 7" -

I Utilizes edge features : :

|

| F[Z ¢°(pi, j)] I F[Z p1,ipT,; P (Rij)]
! i,j€J I -

I Raposo, et al. (1702.05068), I

| Santoro, et al. (1706.01427) I

This network is able to analyze most of prong substructures
and their correlations. 6/ 22



What else do we need?

Boosted Top jets is very rich in characteristic features
=trbg-huiyip g Neghighs

I Three-prong IColor triplet Color triplet subjets
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Color charge senstive variable — constituent multiplicity.
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Subjet color charges

Constituent multiplicity is sensitive to the color charge of originating
parton of jet. (IRC unsafe)

Color triplet Color triplet subjets Color singlet
_/%) = =)
\\A. \\m \\h~
Subjet

Constituent Multiplicity
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Subjet color charges

Constituent multiplicity is sensitive to the color charge of originating
parton of jet. (IRC unsafe)

COIOr t”plet COlO . constituent pT distribution
— PYQCD
----- HW QCD
L . === vincia QCD
\ 4 - & SR PY TOP
i ; HW TOP
vincia TOP
3 .
Subjet

Constituent Multiplicity

ave constituent/(bin Jet)

Constituent PT

1 N
histogram: \
capturing multiplicity \\
conditioned on pt T e -

pT[GeV]

This counting variable analysis seems good, but it can be further extended

Minkowkski Functionals: a generalization of counting observables




Minkowski Functionals

Minkowski functionals (MFs) are the basis of geometric measure
(called valuation) of a given set.
For 2D object analysis, there are three MFs:

‘e
R
‘e "o

Example: two filled disks

Boundary length Euler characteristic
(Gauss-Bonnet)
1 1 1
MFO — / d277 MFl - — dr MF2 — a9 —dr
A 27T oA 27T oA R

With these three numbers, we can describe all the geometric measures
related to this 2D objects. (Hadwiger’s theorem) 10/ 49
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Mathematical Morphology:
Minkowski Functionals and Dilation

quark jet MG5+PY8+Delphes

P il For the jet constituents analysis,

TN £ we binarize the points using energy cutoffs
_ v M < and apply dilation on the binary image.
I > This morphological operation may be
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Mathematical Morphology and
Minkowski Functionals

Q

Perimeter : L

d
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Area

- X

Euler char.

' Second change happens when

:asymtoteasr—0

Green: asymtote as r = infinity

R

If we have more constituents,

' such behavior changes may
| happen multiple times.

| Start: Cech complex:

three points

" First change happens when
. the nearest-neighbor meets

__ Cech complex:
h=1 an L-shaped line

the next nearest-neighbor meets

Cech complex:
R = \/5 a right triangle
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(Combined) Analysis Model

o] Generalization of
Jet Kinematics Constituent Multiplicity: We will consider a NN
(PT, mass, ...) Minkowski Functionals :
(Euler Char., Length, Area) analysing all these
features.
All Top jet features
Two-Point Subjet below are covered by
Energy Correlations S2 Constituent Multiplicity these inputs!
(Relation Network) + constituent PT histogram '
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ROC curve
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Top jet tagging efficiency

We compare the

tagging performance

of our analysis model

to Particle Transformer
working on pixellated

jet constituents with

HCAL resolution scale (0.1)

ROC curves are almost
the same!
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| ow variancel

One Advantage of using high-level feature based networks is
low variance of training compared to low-level feature based networks.

Po (PY vs HW)
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Less training uncertainty in classifier training. 15/ 22



Classifier-based sample reweighting

Low variance - high performance classifier is A(az) o 1
especially useful when we use classifier for Y - 1 - PData ()
reweighting MC samples for the calibration.

Less training uncertainty on likelihood ratio estimation
— more accurate reweighing! Work in progress...

Reweighted energy flow polynomial distributions important in top tagging
(found by DisCo method: 2212.00046)
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Conclusion

« We introduced an analysis model for jet classfication using two-point
energy correlations and Minkowski functionals.

* We showed than this High-Level Feature based classifier shows
competetive performance compared to the state-of-the-art classifiers
such as ParticleNet and ParticleTransformers. at HCAL resolution
scale,

* Our method is more constrained setup than those SotA methods
without losing tagging performance much, we have less training
uncertainty.

 Less training uncertainty is valuable especially when using classifier
as density-ratio estimator, and using it for re-weighting Monte Carlo
generated samples.
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Backups
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IRC-safe energy correlator based

Neural Networks

Graph Networks

Relation Network ﬁm

I Utilizes edge features
|

I F[Z ¢€(pz7pj)]
| 1,]€J

I Raposo, et al. (1702.05068),
| Santoro, et al. (1706.01427)

Deep Sets
(Particle Flow Network)

| Utilizes vertex features

: FI>  ¢" ()]
: icJ

I
| Zaheer, et al. (1703.06114)

IRC-safe energy correlator

based Networks

Relation Network

Utilizes two-point energy correlation

i,jE€J

Energy Flow Network

I
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:
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Utilizes one-point energy correlation:

permutation invariant
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Mathematical Morphology and
Minkowski Functionals

A similar point distribution

3r
. with a different topology may exist,
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Morphological Analysis

on (pixellated) Jet Image

In the case of the analysis on jet images,

we use squares for the dilation in order to preserve

underlying geometry of the data.
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One interesting property of

this setup is that

all the calculation steps of the MFs
can be written in terms of

discrete convolutions.
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Constrained Architectures

and Low-Shot Learning

We showed that our RN+MF has comparable performance to the CNN.
Moreover, it has advantages when the dataset is small,
because RN+MF is more constrained architecture than the CNN.

1.00 prer

&

0.80 F

Top jets vs. QCD jets

0.95 F
0.90 F

> 0.85F
= [

-3
y. ~—e+ RN+MF

-¥-r CNN

I
I
I
I
I
A
|
d 1
? b |
I I
I
I
I

RN+MF (FL) °

ey | R PR T
103 104 10°

N event

RN+MF is much less
sample-demanding
thanks to its constraints.
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A smaller factor 3 gap is here,

but this example has

an exclusive phase space regiOitmm—
parameterized by MFs. 22 [ 22



Sample description

e All the SM jets are simulated by MG5+pythia8.3
» Dark jets are simulated by pythia8.3
* Top jet vs. QCD jet

- Jet constituents: Delphes EFlows

- PT € [500, 600] GeV

- Mass € [150, 200] GeV

- Leading pt anti-kt jets with radius 1.0

- For top jets, all the originating b-quarks and quarks must be
within jet radius 1.0 from the jet center.
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Jets have substructure!

In order to distinguish non-trivial jets from the QCD jets,
we need to check features of jets called substructure..

Gluon jet, pp — jj MG5+PY8+Delphes . Top jet MG5+PY8+De1phes
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There are two approaches for building ML based jet taggers:

Top jet MG5+PY8+Delphes
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Directly analyze
Low-Level Feature (LLF)

Use CNN/GNN/Transfomers to

analyze LLF
- ParticleNet
- ParticleTransformer

ZiEpixel Pr,i [&I‘b. llﬂit}
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——top jets (min axes)
_ _ _top jets (kT axes)

~arXiv:1108.2701

——QCD jets (min axes)|
___QCD jets (kT axes)
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Construct physics-motivated

- Jet PT, mass, (basic kinematics)
- N-subjettiness
- Energy Flow Polynomials

- Constituent Multiplicities...
- LorentzNet, PELICAN (equivariant GNN/Transformer)
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State-of-the-Art
jet taggers
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Figure from R. Das, G. Kasieczka, D. Shih, 2212.00046 26/ 22



GNN / Transformers are working great. But because they are general
purpose low-level feature analysis tools, it is hard to understand outcome
other than the fact that they estimated the classifier output (likelihood ratio)

more precisely.

Can we build up a high-level feature based classifier equally performing
well? YES!

Advantages:
- simpler network: less training uncertainty (at a cost of expressivity)

- interpretable (by understanding HLF inputs) 27 /22



Constrained Architectures

and Low-Shot Learning

We showed that our RN+MF has comparable performance to the CNN.
Moreover, it has advantages when the dataset is small,
because RN+MF is more constrained architecture than the CNN.
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RN+MF is much less
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thanks to its constraints.
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A smaller factor 3 gap is here,

but this example has

an exclusive phase space regiOitmm—
parameterized by MFs. 28 / 22



Mathematical Morphology and
Minkowski Functionals

During the dilation, some peculiar
+ topological structures may appear.
| For example, when a hole appears,
' the Euler characteristic can record
' that clearly.
| Start: four constituents
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The topology of the jet constituents
:asymtote as r - 0 can be analyzed.

Green: asymtote as r = infinity
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