

ParticleGrow: Event by event simulation of heavy-ion collisions via autoregressive point cloud generation

Manjunath Omana Kuttan, Kai Zhou, Jan Steinheimer, Horst Stoecker

Studying strongly interacting matter

Early Universe

Heavy-ion collisions probe the QCD phase diagram

Fast model simulations are necessary to fully exploit future experiments

2

Particles 3.2 (2020): 320-335

Generating "UrQMD like events"

ityp	nucleon	ityp	delta	ityp	lambda	ityp	sigma	ityp	xi	ityp	omega
1	N_{938}	17	Δ_{1232}	27	Λ_{1116}	40	Σ_{1192}	49	Ξ_{1317}	55	Ω_{1672}
2	N_{1440}	18	Δ_{1600}	28	Λ_{1405}	41	Σ_{1385}	50	Ξ_{1530}		
3	N_{1520}	19	Δ_{1620}	29	Λ_{1520}	42	Σ_{1660}	51	Ξ_{1690}		
4	N_{1535}	20	Δ_{1700}	30	Λ_{1600}	43	Σ_{1670}	52	Ξ_{1820}		
5	N_{1650}	21	Δ_{1900}	31	Λ_{1670}	44	Σ_{1775}	53	Ξ_{1950}		
6	N_{1675}	22	Δ_{1905}	32	Λ_{1690}	45	Σ_{1790}	54	Ξ_{2025}		
7	N_{1680}	23	Δ_{1910}	33	Λ_{1800}	46	Σ_{1915}				
8	N_{1700}	24	Δ_{1920}	34	Λ_{1810}	47	Σ_{1940}				
9	N_{1710}	25	Δ_{1930}	35	Λ_{1820}	48	Σ_{2030}				
10	N_{1720}	26	Δ_{1950}	36	Λ_{1830}						
11	N_{1900}			37	Λ_{1890}						
12	N_{1990}			38	Λ_{2100}						
13	N_{2080}			39	Λ_{2110}						
14	N_{2190}										
15	N_{2200}										
16	N_{2250}										

Table 1: Baryon-itypes used in UrQMD. Antibaryons carry a negative sign.

ityp	0^{-+}	ityp	1	ityp	0^{++}	ityp	1++	ityp	charmed
101	π	104	ρ	111	a_0	114	a_1	133	D
106	K	108	K^*	110	K_0^*	113	K_1^*	134	D^*
102	η	103	ω	105	f_0	115	f_1	135	J/Ψ
107	η'	109	ϕ	112	f_0^*	116	f'_1	136	χ_c
ityp	1^{+-}	ityp	2^{++}	ityp	$(1^{})^*$	ityp	(1)**	137	Ψ'
122	b_1	118	a_2	126	ρ_{1450}	130	ρ_{1700}	138	D_s
121	K_1	117	K_2^*	125	K_{1410}^{*}	129	K_{1680}^{*}	139	D_s^*
123	h_1	119	f_2	127	ω_{1420}	131	ω_{1662}		
124	h'_1	120	f'_2	128	ϕ_{1680}	132	ϕ_{1900}		

Table 2: Meson-itypes in **UrQMD**, sorted with respect to spin and parity, included into the **UrQM** model. Mesons with strangeness -1 (or charm -1 for itypes > 132) carry a negative sign. See Table

4

ParticleGrow

The data

- UrQMD cascade
- Au- Au , E_{lab}= 10 AGeV, b= 1 fm
- Training: 4000 events
- testing: 6400 events
- We fix the event multiplicity to be 1100
 - 7 particle species
- A particle:
 - \circ PID, p_x , p_y , p_z
- Events with less particles are filled with zeros

 empty/ dummy particle
- Loss: cross entropy
 - 100 bins for momentum distributions
 - 8 bins for PID

An event in point cloud representation

5

Generation $p(ID_{200}|S_{\leq 199})$ Step: 200 1.0F \$ 1.5 1.0 Probability density 0.4 0.7 0.7 0.5 p_y 0.0 =-0.5 -1.0 -1.5 -1-1.5-1.0-0.50.01.5 1.0 0.0 0.5 empty N Σ [I] π K η Λ 0.0 0.5 -0.5 -1.0 P× 1.0 Particle ID p_z -1.5 1.5 $\mathsf{p} \; (p_{y_{200}} | S_{\leq 199}, ID_{200}, p_{z_{200}})$ $p(p_{x_{200}}|S_{\le 199}, ID_{200}, p_{z_{200}}, p_{y_{200}})$ $p(p_{z_{200}}|S_{\leq 199}, ID_{200})$ Probability density 0.004 0.005 $0.000 \frac{1}{4}$ -2-20 -20 2 2 0 2 -4-4

 p_z [GeV]

 p_y [GeV]

7

 p_x [GeV]

Performance: Momentum distributions

Performance: Momentum distributions

Well captured for most species **Deviations at tails!** UrQMD Doesn't learn Ξ distributions! ParticleGrow $\eta: p_x$ $\eta: p_y$ $\eta: p_z$ 1.0 µPG:-0.0 GeV µPG:-0.0 GeV µPG:-0.0 GeV μ_{Ur} :-0.0 GeV µUr:-0.0 GeV $\mu_{Ur}:0.0 \text{ GeV}$ σPG:0.36 GeV $\sigma_{PG}:0.32 \text{ GeV}$ σ_{PG}:0.61 GeV 0.5 σ_{Ur}:0.38 GeV $\sigma_{Ur}:0.38 \text{ GeV}$ $\sigma_{Ur}:0.64 \text{ GeV}$ 0.0 $\Lambda: p_x$ $\Lambda: p_v$ $\Lambda: p_z$ 0.75 μ_{PG}:-0.0 GeV μ_{PG}:0.0 GeV µPG:-0.02 GeV μ_{Ur}:0.0 GeV μ_{Ur}:-0.0 GeV μ_{Ur}:-0.0 GeV 0.50 σ_{PG}:0.77 GeV σPG:0.45 GeV $\sigma_{PG}:0.46 \text{ GeV}$ Probability density $\sigma_{Ur}:0.55 \text{ GeV}$ $\sigma_{Ur}:0.55 \text{ GeV}$ $\sigma_{Ur}:0.93 \text{ GeV}$ 0.25 0.00 $\Sigma: p_x$ $\Sigma: p_v$ $\Sigma: p_z$ 0.8 µPG:-0.04 GeV µPG:0.01 GeV µPG:-0.13 GeV 0.6 μ_{Ur}:0.0 GeV µ_{Ur}:-0.0 GeV μ_{Ur}:-0.0 GeV 0.4 σ_{PG}:0.57 GeV σ_{PG}:0.53 GeV σ_{PG}:1.09 GeV $\sigma_{Ur}:0.59 \text{ GeV}$ $\sigma_{Ur}:0.59$ GeV our:0.99 GeV 0.2 0.0 $\overline{\Xi}: p_y$ $\Xi: p_z$ $\Xi: p_x$ 2 µPG:-0.66 GeV $\mu_{PG}:0.0 \text{ GeV}$ µPG:-0.2 GeV µUr:0.01 GeV µUr:-0.0 GeV µUr:-0.01 GeV σ_{PG} :1.3 GeV σ_{PG}:0.42 GeV σ_{PG}:1.72 GeV $\sigma_{Ur}:0.56 \text{ GeV}$ $\sigma_{Ur}:0.56 \text{ GeV}$ $\sigma_{Ur}:0.92 \text{ GeV}$ -2-2 2 2 0 -2 0 Momentum [GeV]

ML4Jets2023, DESY

09-11-2023 12

Particle Multiplicity

- everything except *Ξ* agrees well to ground truth
- learns certain correlations of abundant particles
- Also creates several non existent correlations \circ Σ - \varXi

Rapidity distributions

• Agrees well to the data except for Ξ !

p_{T} distributions: mid rapidity

• Deviates at tails but reproduces the mean p_{T} well for most particles

Outlook

- Learns the mean and variance of the distributions well
- Averaged observables are well reproduced
- certain correlations are well captured
- Also learns also fictitious correlations
- Low multiplicity particles are not learned well

 only 4000 training events!
- Increase training dataset
- train on hydro/ hybrid model data
- train for detector response simulation
- conditional generation :
 - centrality, collision system, beam energy

Backup slides

p_{T} distributions: Forward and backward rapidity

Multiplicity distributions

- Event multiplicity matches UrQMD data well
- The means of individual distributions are close to ground truth
- However, the variance and higher moments deviate from true values

ML4Jets2023, DESY

The Phase Diagram

Autoregressive point cloud generation

Sun, Yongbin et al. 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) (2018): 61-70.

PointGrow: Autoregressively Learned Point Cloud Generation with Self-Attention

$$p(\mathbf{S}) = \prod_{i=1}^{n} p(\mathbf{s}_i | \mathbf{s}_1, ..., \mathbf{s}_{i-1}) = \prod_{i=1}^{n} p(\mathbf{s}_i | \mathbf{s}_{\le i-1})$$

Yongbin Sun¹, Yue Wang¹, Ziwei Liu², Joshua E Siegel³ & Sanjay E Sarma¹

1. Massachusetts Institute of Technology 2. The Chinese University of Hong Kong 3. Michigan State University

Context Awareness Operation

Self-Attention Context Awareness-B (SACA-B) Operation

Self-Attention Context Awareness-A (SACA-A) Operation