

Cluster Scanning: a novel approach to resonance searches

<u>Ivan Oleksiyuk</u>*, John Raine, Tobias Golling, Slava Voloshynovskiy
University of Geneva

Michael Krämer

RWTH Aachen

*ivan.oleksiyuk@unige.ch

ML4Jets 2023

Problem formulation

Bump hunting:

Select a signal rich subspace
 ⇒ based on signal model

2. Find a way to estimate background ⇒ Usually n-parameter fit or SWIFT

- 3. Define and calibrate test statistic
- 4. Unblind and find significance/limits

Problem formulation

Bump hunting:

- Select a signal rich subspace
 ⇒ based on signal model
 Can we do it in a model agnostic way?
 Use unsupervised ML?
- Find a way to estimate background
 ⇒ Usually n-parameter fit or SWIFT
 Can we do this without assumptions on functional form or smoothness?
- 3. Define and calibrate test statistic **Need fast methods for calibration**
- 4. Unblind and find significance/limits

Answer: Cluster Scanning!

Outliers or Overdensities?

- Usual assumption: anomalies = outliers
- In HEP: signal is produced by the same process
- Anomalies localised⇒Use clustering
- Small number of clusters contain several times more signal than the rest

Smoothness or Independence?

- Usual assumption: Background is smooth/parametrizable with $f(x)=p_1(1-x)^{p_2}x^{p_3+p_4\ln(x)+p_5\ln(x^2)}$ But it is just a good guess
- Our assumption: Clustering jets in a narrow m_{jj} window will make m_{jj} and cluster index independent variables

 $p(m_{jj}|jet \ in \ cluster \ i) \approx p(m_{jj}|jet \ in \ cluster \ j)$

Data and Preprocessing

- Use LHCO R&D dataset with QCD background and Z' signal
- Low-level features⇒ jet-images
- Images are very sparce
 ⇒ smearing with a gaussian kernel
- Pixel intensities span several orders of magnitude
 - \Rightarrow Apply power function with n = 0.5

- 1. Take all jets from narrow m_{ij} window.
- 2. Use **mini-batch k-means** to cluster jet images into 50 clusters.

3. For each m_{jj} bin assigning jets to the cluster they are closest to

4. Scan through all bins to get cluster

80000

60000

Selection,

95710 Z' QCD

all Z'

378303 QCD,

| 1M QCD, 5K Z'

7000

1800

5. Normalise distributions to the same norm of 1

- 6. Standardize in each bin using outlier robust mean and standard deviations
- 7. Label all the clusters that deviate more than 3 robust standard deviations as signal rich and the rest signal depleted

- 8. Combine selected clusters into signal rich spectrum with a bump and rest into background estimate
- 9. Find test statistic (maximum local significance) from difference between them

- 10. Ensemble by averaging several test statistics of several k-means initialisations
- 11. Calibrate using bootstrap resampling
- 12. Evaluate p-value for signal contaminated pseudo-experiments

 Benchmark: global fit with n-parameter dijet fit function.

$$f(x) = p_1(1-x)^{p_2}x^{p_3+p_4\ln(x)+p_5\ln(x^2)}$$

 Can detect 3-sigma evidence with only 61% of the signal needed for the fitbased method.

Cluster Scanning works for narrow resonance searches!

Idealised performance

Case: model for background is known

Idealised fit:

Fit = background expectation Analysed sample = expectation + statistic fluctuation fluctuations

Idealised CS:

$$p(m_{jj}|Cluster i) = p(m_{jj}|Cluster j)$$

 m_{ii} + low-level features > only m_{ii}

Conclusion

Cluster scanning is:

- Useful: improves significance compared to global functional fit
- Versatile: background estimate without fitting + model agnostic
- Complementary: different set of assumptions
- Fast: ensembling and calibration

Potential further applications - Synergy with Deep Learning:

- Apply to features extracted by supervised/unsupervised/SSL deep learning
- Apply after a cut on the anomaly score in anomaly detection methods work in mass sculpting regime

Thank you for attention

Please ask your questions

Backup: clusters

09/11/2023

Cluster Scanning

Ivan Oleksiyuk

17

Backup: outlier robust measures

While searching for outliers, it is preferred to use outlier robust estimators for standard deviation (SD) and mean. We define them as follows: given a sample of observations $S = \{\vec{x_1}, \vec{x_2}, ... \vec{x_n}\}$ we find a median $med(\vec{x})$ (which is itself an outlier robust estimator) of this sample and take a subsample $\tilde{S_f}$ that is constructed from S by discarding a fraction 0 < f < 1 of all samples that have largest absolute distance to this median. In this way we have discarded the outliers. After that we construct estimators $\tilde{\mu}_f = mean(\tilde{S_f})$ and $\tilde{\sigma}_f = SD(\tilde{S_f}) \cdot g(f)$. If S is a sample from $\mathcal{N}(\mu, \sigma)$ it is obvious that with $\lim_{n \to \infty} \tilde{\mu}_f = \lim_{n \to \infty} mean(S) = \mu$. If one takes S from $\mathcal{N}(0,1)$ and rescales $\vec{x_i} \to \sigma \vec{x_i}$, then both estimators transform $\tilde{\sigma}_f \to \sigma \tilde{\sigma}_f$ and $SD(S) \to \sigma SD(S)$ by definition, so both estimators $\tilde{\sigma}_f$ and SD(S) are proportional to a true σ of the Gaussian distribution.

Backup: no ensambling

Backup: training in the signal rich region

