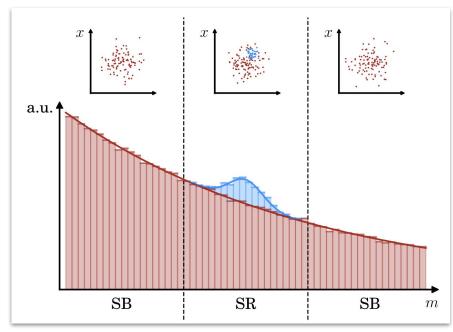
DRAPES: Diffusion for weakly supervised searches

ML4Jets, 2023 Debajyoti Sengupta, <u>Matthew Leigh</u>, Johnny Raine, Sam Klein, Tobias Golling

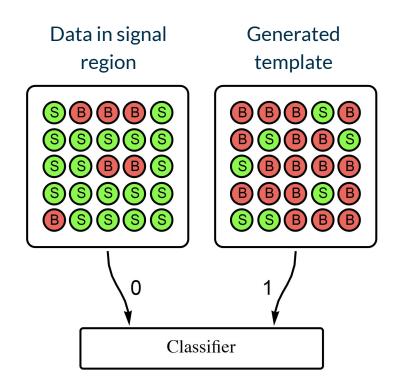
Template Building

• **CATHODE**:

- Purely data driven
- Train conditional model in the sidebands
 - Conditional on mjj
- Generate template in the signal region



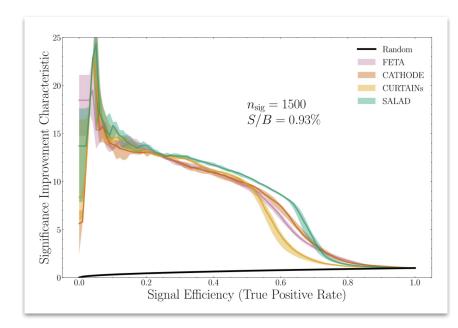
CWoLa



Weakly Supervised Regime

- <u>LHCO RnD dataset</u>
 - Background: QCD dijets
 - Signal: W' \rightarrow X(qq) Y(qq)

• Dijet system described by a 5-vector $m_{J_1}, \Delta m_J = m_{J_1} - m_{J_2}, \tau_{21}^{J_1}, \tau_{21}^{J_2}, \Delta R_{JJ} = \sqrt{\Delta \eta^2 + \Delta \phi^2}$



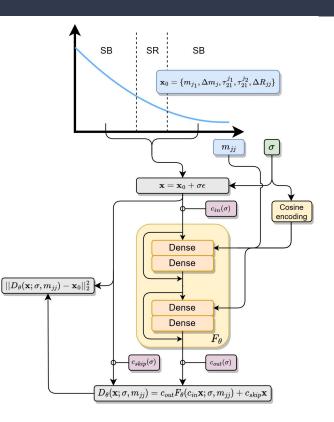
from : <u>2307.11157</u>

Task

- All ML methods so far use normalising flows
- Lately we have seen great success with diffusion models
- Lets try them for weakly supervised anomaly detection!
 - Benchmark using LHCO

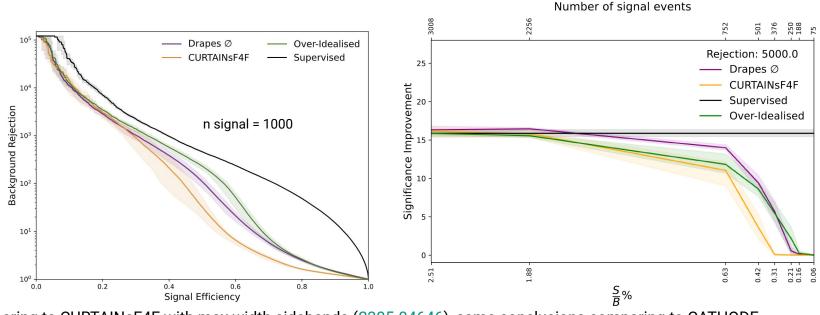
Drapes Ø: Training

- Template building with diffusion on features
 - Train on sidebands
 - Generate in signal region
 - Analogous to CATHODE
- Step one use same features as all the others



Drapes Ø: Performance

• Diffusion models achieve state of the art!



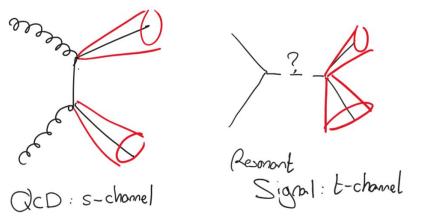
What else?

- Diffusion improves on SotA performance with same inputs!
- But also: Diffusion opens up further possibilities
 - 1. High quality generation of point cloud data
 - 2. Partial generation

Anomaly detection with point cloud data

Drapes Ø for constituent level

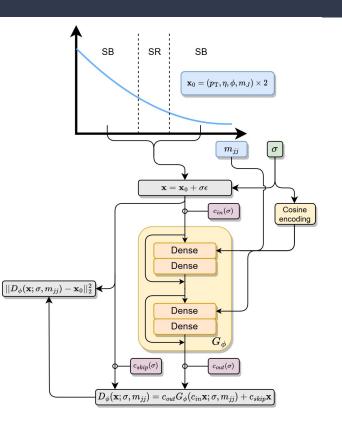
- Instead of the high level features, train a diffusion model to generate the jet point clouds
 - No longer need to choose "optimal" set
- Use <u>PC-Droid</u> model to conditionally generate jets
 - Can diffuse each jet independently
 - Don't expect correlated substructure in QCD
 - But additionally need to model jet kinematics | mjj



See also: Cedric's talk later today on Full Phase Space Anomaly Detection https://arxiv.org/abs/2307.06836

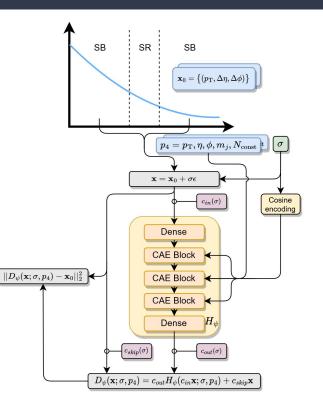
Generation Chain

- Model 1
 - Generate jet kinematics given mjj



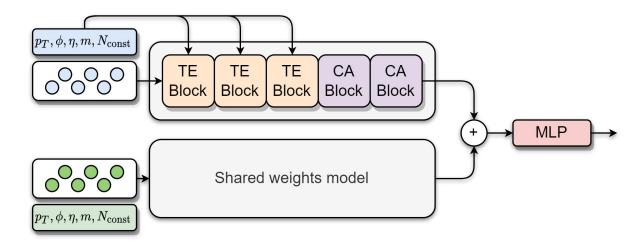
Generation Chain

- Model 2
 - Generate point cloud given kinematics



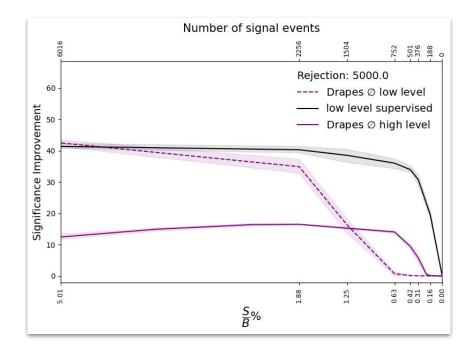
Discriminator used for CWoLa

- The two jets are processed by the same network.
- The outputs are added and passed through MLP
 - Permutation invariance within jets
 - Permutation invariance between jets

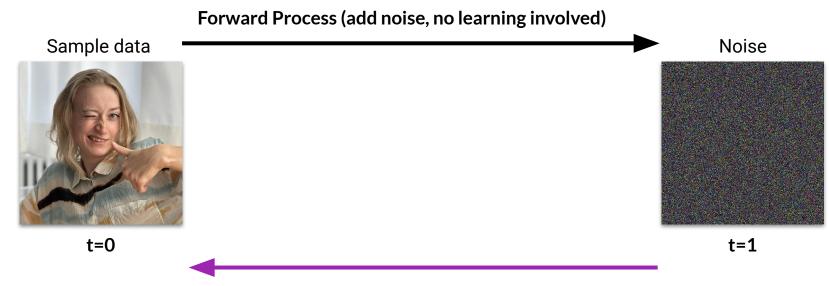


Drapes for constituent level

- Massive boost in performance for S/B > 1%:
 - CWoLa training struggles in higher dimensions
- High level features still performant for lower signal strengths
- Same behaviour observed in idealised setting



Anomaly detection with partial diffusion



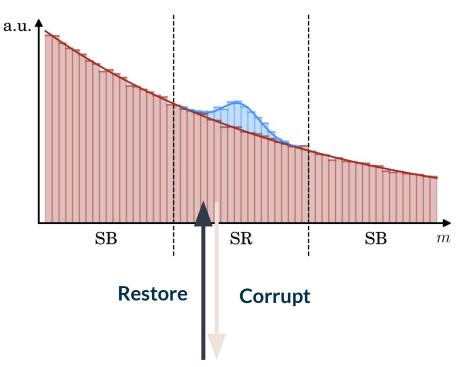
Reverse Process (requires neural net)

Sample data Noise t = strength t = t

Drapes

• Modify not generate

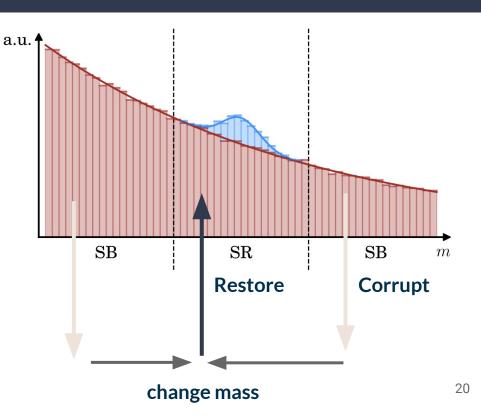
- Where do we modify our data from?
 - DRAPES SR
 - From the signal region
 - Should make signal samples less "signally"



Drapes

• Modify not generate

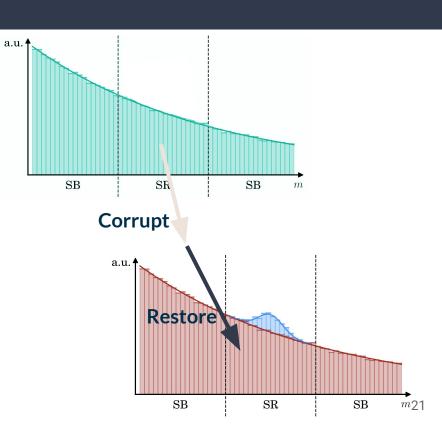
- Where do we modify our data from?
 - o **DRAPES SB**
 - From the sideband
 - Give sample new mass
 - Similar to CURTAINS



Drapes

• Modify not generate

- Where do we modify our data from?
 - o **DRAPES MC**
 - From the another MC template
 - Change sample generation
 - Similar to FETA



Sample data

t=0

t = strength

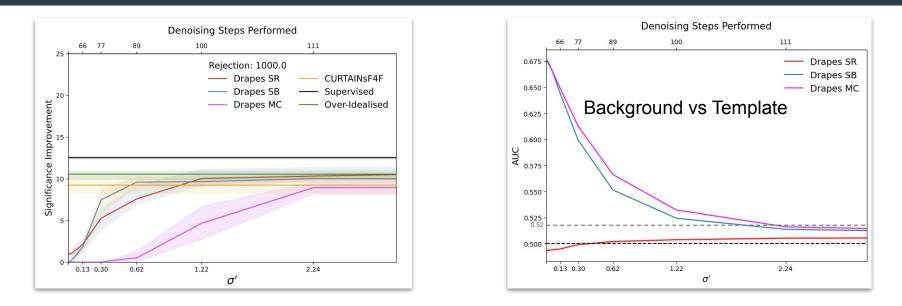
Noise

t=1

How much noise is enough?

22

Partial Diffusion on High Level



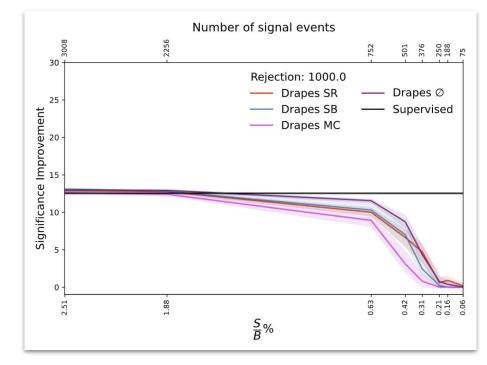
- Method works but SIC performance saturates rather than peaks
- Background vs Template separation ~ 0.515, even lower for Drapes SR

Not using variance preserving diffusion so use σ' instead of t; σ_{max} = 80

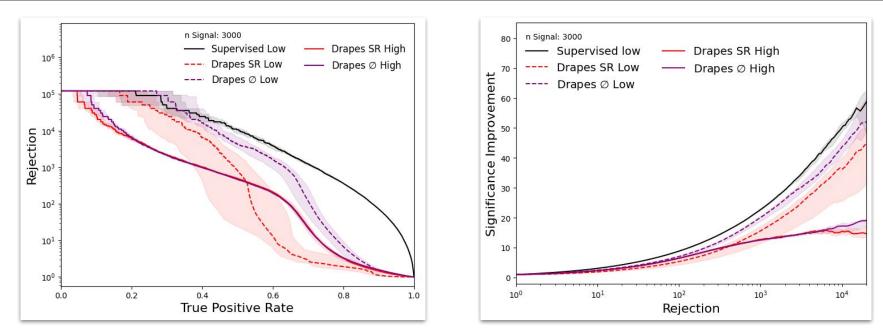
Partial Diffusion on High Level features

Look at behaviour for range of signal injections with $\sigma' = 2.24$

- Background templates in good agreement with data
- Partial methods don't perform as well as full diffusion
 - But reduce overall computation for inference
 - Drapes SR lower AUC in no signal case



Partial Diffusion on Low Level



- For **Drapes SR Low** we only modify jet point cloud (not mjj or jet kinematics)
- Performance is not as good as full generation but still outperforms high level!

Conclusions

Stay tuned for arXiv:23XX.XXXX

- Diffusion perfectly viable for template generation
 - Drapes achieves **state of the art** performance on LHCO
- Drapes works really well using low level information
 - We do see CWoLa struggling in this setting with low signal
 - We have seen that pre-training may help this
- Drapes with **partial diffusion shows promise**
 - Does not perform as well as full generation
 - Can get more accurate templates in absence of signal
 - Can significantly reduce inference time

Thank

You

"Draw an image containing the following: Curtains, drapes, salad, feta, a koala, an anode, and a cathode"

Backup

Diffusion Models

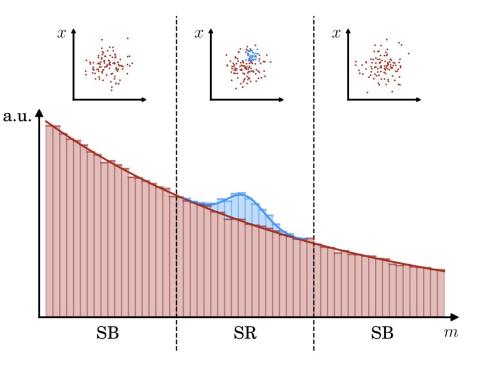
Forward / noising process

• Sample noise $p_T(\mathbf{x}_T) \rightarrow \text{turn into data}$

CATHODE

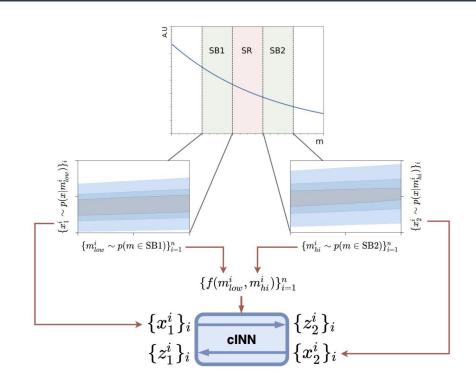
- Use NORMALISING FLOW

- Train on sidebands
- Condition on mass
- Use to generate in signal region



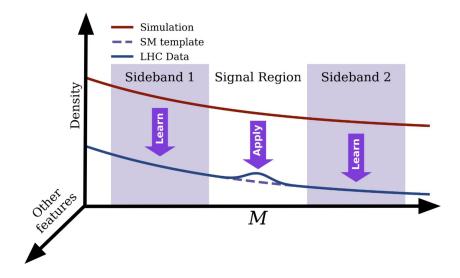
CURTAINS

- Rather than generate from scratch
- Learn how to modify data
 - ie: Take a sample, give it a new mass, and morph



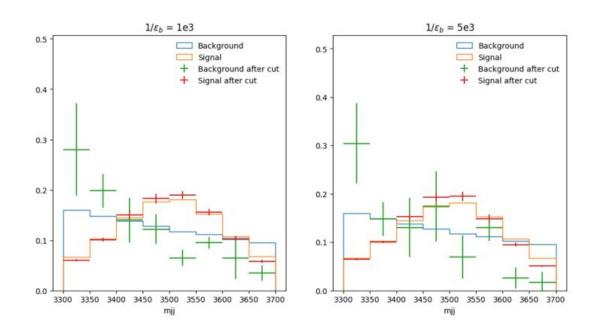
FETA

- Learn to transform MC to DATA
- Train by transforming sidebands
- Apply in signal region
- Learn how to modify data
 - Give it new origin

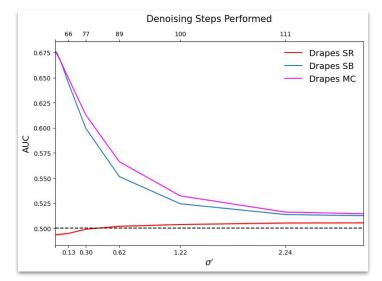


Mass Sculpting

 Verified that the classifier does not appear to significantly sculpt the mass



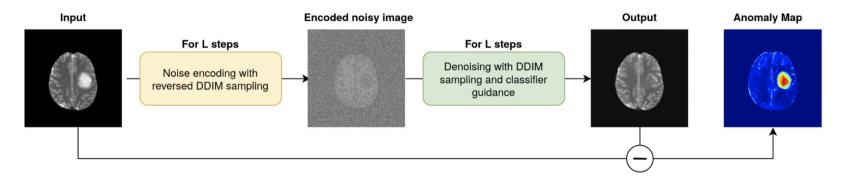
Background Template Seperation



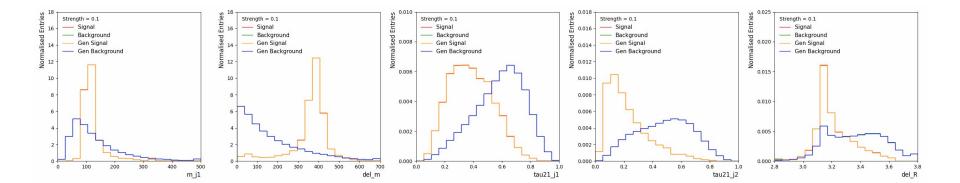
AUC for template vs background as a function of sigma'

Diffusion Anomaly Detection

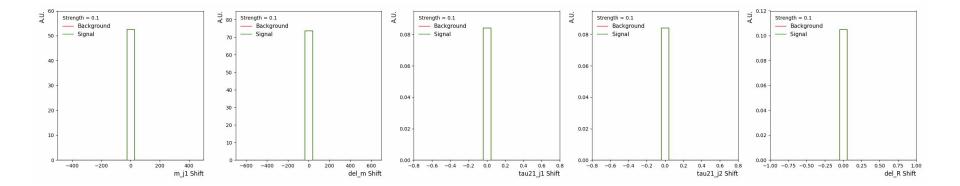
- Method has seen success in image applications
- Won't be exactly how we will use it



Drapes SR – Effect on Distributions



Drapes SR – Effect on Sample



Exclusion Limits

