Scalar Field Theories via Neural Networks at Initialization

Anindita Maiti

Based on [2307.03223], [2106.00694], [2008.08601] w/ Halverson, Schwartz, Demirtas, Stoner

ML4Jets Nov-9-2023

Email: amaiti@perimeterinstitute.ca

Overview & Motivation

- Deep Learning is widely used as a toolbox, to approximate systems.
- Can we come up with Neural Network architectures that can exactly represent some quantum field ϕ , without training? I.e. ab initio AI for qft?

Neural Network Field Theory Correspondence

$$
Z[\phi] = \int D\phi e^{-S[\phi]}
$$

• Initialize NN many times, do not train.

• Statistical distribution over NN outputs $\phi(x)$ can be cast in path integral formalism, as a field distribution.

Each initialized architecture corresponds to a unique field distribution!

Free vs. Interacting NN Field Distributions

- [Albergo et al. 2019], [Hackett et al. 2021], [Bachtis et al. 2021], [de Haan et al. 2021], [Bachtis et al. 2022], [Abbott et al. 2022], [Gerdes et al. 2022]
- [Berman et al. 2022], [Krippendorf et al. 2022], [De Luca et al. 2022], [Cotler et al. 2023]
- Correspondences between initialized NNs and field theory
	- ‣ Theory of NN and deep learning at finite width, and other aspects of CLT breaking
	- ‣ Theory of NN at asymptotically large width

‣ ML for field theories on lattice ‣ Correspondences between learning dynamics and RG and Hamiltonian evolution

- Central Limit Theorem (CLT) constrains NN field distributions as free ones.
- Three axis shows three ways to violate CLT, i.e. turn on field interactions.

Conditions for Central Limit Theorem

NN Field Action *S*[*ϕ*]

$$
Z[J] = \int D\phi e^{-\lambda}
$$

Free field action is easy to derive.

• Use NN architecture space to obtain connected parts of *n*-pt functions. $G^{(n)}(x_1,\cdot\cdot\cdot)$

Then,
$$
S_{\text{free}}[\phi] = \frac{1}{2} \int d^d x_1 d^d x_2 \phi(x_1) G_c^{(2)}(x_1, x_2)^{-1} \phi(x_2)
$$

 $\left| S_{\text{free}}[\phi] \! - \! S_{\text{int}} \! + \! \int d^d x J(x) \phi(x) \right|$

$$
\cdot \ , x_n):=\mathbb{E}[\phi(x_1)\cdots \phi(x_n)]=\int dh P(h)\phi(x_1)\cdots \phi(x_n)
$$

NN Field Action *S*[*ϕ*]

How to construct couplings $g_r(x_1, \dots, x_r)$ in

A new set of Feynman rules, to construct $g_r(x_1, \dots, x_r)$ using connected correlators $G_c^{(r)}$. *c*

$$
S_{\rm int} = \sum_{r=3}^{\infty} \int \prod_{i=1}^{r} d^d x_i \, g_r(x_1, \ldots, x_r) \, \phi(x_1) \ldots \phi(x_r) \, ;
$$

Feynman Rules for $g_r(x_1, \ldots, x_r)$.

- 1. Internal points associated to vertices are unlabeled, for diagrammatic simplicity. Propagators therefore connect to internal points in all possible ways.
- 2. For each propagator between z_i and z_j ,

$$
z_i \ \text{---} \ z_j \ = G_c^{(2)}(z_i, z_j)^{-1}.\tag{3.22}
$$

3. For each vertex,

$$
G_c^{(n)} = (-1)^n \int d^d y_1 \cdots d^d y_n G_c^{(n)}(y_1, \cdots, y_n).
$$
 (3.23)

4. Divide by symmetry factor and insert overall $(-)$.

Table 2: Feynman rules for computing g_r from each connected diagram with $G_c^{(n)}$ vertices.

Example: Finite N, i.i.d. parameters

$$
S[\phi]=S_{\textrm{free}}[\phi]-\int d^dx_1\cdots d^dx_4\, g_4(x_1,\cdots,x_4)\,\phi(x_1)\cdots \phi(x_4)+O\Big(\frac{1}{N^2}\Big)
$$

$$
^{(j)}(y_3,x_3)^{-1}G_c^{(2)}(y_4,x_4)^{-1}\,+\mathrm{Comb.}\Bigg]+O\left(\frac{1}{N^2}\right),
$$

How to constrain the architecture?

• Next, deform NN parameters at infinite *N*,

to insert
$$
S_{\text{int}}[\phi] = \lambda \int d^d x_1 \cdots d^d x_r \mathcal{O}_{\phi}(x_1)
$$

 \bullet i.i.d. parameters $P(h) := P_G(h)$

- **◎** Redefine $P(h) := P_G(h) e^{-\lambda \int d^d x_1 \cdots d^d x_r} \mathcal{O}_{\phi_h}(x_1, \cdots, x_r)$
	- (t_1, \dots, x_r) in NN ensemble action.

Constrain NN for Given *S*[*ϕ*]

• Getting correct free theory action $S_{\text{free}}[\phi]$ is easy. \circ lim $N \to \infty$

$$
S[\phi] = \int d^d x \left[\phi(x) (\nabla^2 + m^2) \phi(x) + \frac{\lambda}{4!} \phi(x)^4 \right]
$$

$$
\nabla^2 := \frac{\partial^2}{\partial x^2}
$$

$$
Z[J] = \int da \, db \, dc \, P(a, b, c) \, e^{\int d^d x J(x) \, \phi_{a, b, c}(x)}
$$

Scalar $\lambda \phi^4$ NN field theory

The architecture

$$
\phi_{a,b,c}(x) = \sqrt{\frac{2 \operatorname{vol}(B_\Lambda^d)}{\sigma_a^2 (2\pi)^d}} \sum_{i,j} \frac{a_i \, \cos(b_{ij} x_j + c_i)}{\sqrt{\mathbf{b}_i^2 + m^2}}
$$

$$
\lim_{P_G(a)} N \to \infty
$$
\n
$$
P_G(a) = \prod_i e^{-\frac{N}{2\sigma_a^2} a_i a_i}
$$
\n
$$
P_G(b) = \prod_i P_G(b_i) \text{ with } P_G(b_i) = \text{Unif}(B_{\Lambda}^d)
$$
\n
$$
P_G(c) = \prod_i P_G(c_i) \text{ with } P_G(c_i) = \text{Unif}([-\pi, \pi])
$$
\n
$$
P(a, b, c) = P_G(a) P_G(b) P_G(c) e^{-\frac{\lambda}{4!} \int d^d x \phi_{a, b, c}(x)^d}
$$

Conclusion & Outlook

- NN output ensembles are field distributions.
- CLT constrains NN field theory as a free one. Violation of CLT turns on interaction terms.
- NNFT action $S[\phi]$ can be obtained using new Feynman rules.
- Some interacting NNFT are obtained by appropriately distorting NN parameter distributions.
- E.g. an architecture for $\lambda \phi^4$ scalar field theory is obtained at inf N, via parameter deformations from i.i.d.
- Currently, we are working on NN architectures at initialization for fermionic field theories.

My amazing collaborators!

Jim Halverson Matt Schwartz

Mehmet Demirtas Keegan Stoner

Thank you! Questions?

Feel free to get in touch: email: amaiti@perimeterinstitute.ca Twitter: @AninditaMaiti7 web: https://aninditamaiti.github.io/