

Update of SmartBKG --

Improved Selective Background Monte Carlo Simulation at Belle II with Graph Attention Networks and Weighted Events

Boyang Yu, Nikolai Hartmann, Thomas Kuhr *Ludwig-Maximilians-Universität München* ML4Jets, Nov. 06, 2023

Bundesministerium für Bildung und Forschung

Motivation

Normal Monte Carlo Simulation data flow

Previous Works:

- **PhD Thesis**: Hadronic Tag Sensitivity Study of $B \rightarrow K^{(*)}v\bar{v}$ and Selective Background Monte • Carlo Simulation at Belle II, James Kahn, 2019
- **Talk**: Selective background Monte Carlo simulation at Belle II, James Kahn, CHEP 2019 •

Upsilon(4S)

gamma

gamma

pi+

gamma

anti-B0

anti-p-

gamma

αamma

p+

K_S0

D*0

pi+

gamma

gamma

pi-

Tree Structures of Particle Decay Graph Neural Network Tree Structures of Particle Decay PDG id Features

Dataset:

LUDWIG-MAXIMILIANS-UNIVERSITÄT

- Each event (each **Graph**):
 - ▶ Decay of $\Upsilon(4S) \to B^0 \overline{B}{}^0$
 - Particles (Nodes)
 - Mother/Daughter relations (two way Edges) + self loops

K+

- Each particle (each Node)
 - PDG id
 - > 8 Features: Production time, Energy, Position (3d), Momentum (3d)

D*-

pi-

gamma

anti-D0

- Label per event: Pass/Fail after the skims
 * FEI Hadronic B0, retention rate 4.25%
- Other event level **attributions** for further analysis: e.g. M_{bc} etc.

Updating node features:

Graph Convolutional Networks (GCN) -> Graph structure remains

Updating global features:

Global Average Pooling -> Graph structure degenerated

Improvement with attention mechanism

Graph Attention Networks (GAT) -> Graph structure remains

Global Attention Pooling (GAP) -> Graph structure degenerated

Each head (color) represents a different set of attention weights

٠

NN Performance

D*(2010)-

γ

Best AUC* improved from 0.9083 to 0.9122 ۲ * Area under the Curve of ROC (The closer to 1 the better)

Darker \rightleftharpoons More attention

K(S)0

π-

 π +

Bias due to False-Negatives with Naive Filtering

Skim NN	Positive	Negative
Pass	True- <mark>Positive</mark> (TP)	False-Negative (FN)
Fail	False-Positive (FP)	True- <mark>Negative</mark> (TN)

LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	Veighting		
	Importance Sampling	Reweighting Method	Reject Sampling
Use of NN output	As probability to keep event randomly	As score for selection according to fix threshold	Sample in accordance with the score distribution of true positive events relative to the entire dataset.
Weight	Inverse of NN output	Decided with the help of another classifier	_
Loss to train NN	Speedup	Binary cross entropy	Binary cross entropy

Metric: Speedup

--Improvement of computation time to produce the same

effective sample size with the help of NN filter:

Speedup:
$$s = \frac{t_{no_filter}}{t_{filter}}$$

Effective Sample Size:
$$N_{eff} = \frac{(\sum \omega_i)^2}{\sum \omega_i^2}$$

0

Weighting performance

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

	Importance	Reweighting	Reject (ongoing)
Maximum speedup	2.0	6.5	~3.2
Bias	No bias	Small bias on some of the variables	Small bias on some of the variables

Practice

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

LMU

Test the module using $B^+ \rightarrow K^+ \nu \nu$ inclusive reconstruction: Simulation with smart background selection

Simulation with smart background selection $MC \rightarrow NN \rightarrow Det. Sim \rightarrow Reco \rightarrow Skim \rightarrow Analyse \cdots \rightarrow Fail$				
$B^+ \rightarrow K^+ \nu \nu$ inclusive	skim.WGs.ewp	SmartBKG		
Datasets	Run full chain with charged generic MC	Train: Charged generic MC14 Test: Run full chain with charged generic MC and SmartBKG		
Process (Time measurement)	 DetSim & Rec Skim ROE Y(4S) Reconstruction 	 NN Prediction & Importance Sampling DetSim & Rec (Test only) Skim ROE Y(4S) Reconstruction 		
Sample sizes	0.5M	Train: 1.7M Test: 0.5M		
Retention rate	3.68%	16.1% (True-Positive-Rate: 60.4%)		
Speedup	-	Theoretical during training: 2.09 Measured in practice: 1.92	1(

Conclusion:

- Attention mechanism can improve NN performance for selective background monte carlo simulation
- Bias is avoided with importance sampling method while a speedup of factor 2 can still be maintained
- Reweighting method can reach much higher speedup up to 6.5 but will still have some bias in the variables that are not used in the training of the extra classifier
- Reject sampling has a speedup around 3 and doesn't bring any weights. But the bias and stability have to be studied

Current:

• Study of reject sampling

Thank You for your Attention

Boyang Yu, Nikolai Hartmann, Thomas Kuhr *Ludwig-Maximilians-Universität München* ML4Jets, Nov. 06, 2023

Backup

Belle II Experiment:

- At SuperKEKB
 - Electron-positron collider
 - Centre-of-momentum energy close to the mass of Y(4S) resonance to mainly produce B mesons
 - Located in Tsukuba, Japan
- Detector for reconstruction and identification of charged and neutral particles
- Search for new physics
- World's highest luminosity
- Huge MC dataset for analysis

Tagging method:

Retention rate after reconstruction and selection of tag-side B candidate:

FEI Skim	Hadronic B ⁺	Hadronic B ⁰
Mixed $(\Upsilon(4s) \rightarrow B^0 \overline{B}^0)$	5.62%	4.25%

Quantitative Studies

Comparison

Parameters:

- n_heads = 4
- n_layers = 6
- n_units = 128
- batch_size = 128
- n_train = 0.9M
- n_val = 0.1M
- n_test = 0.5M

Loss:

• Entropy

EarlyStopping:

- patience = 3
- delta = 1e-5

	GCN(sep)	GAT(sep)	GAT(gen)	GAT+GAP(gen)
TrainingTime	3619.46s	4047.47s	3471.48s	5049.81s
AUCValues	0.90831	0.90937	0.90891	0.91216

Hyperparameter Optimization

Model	ALIC	Batch	Number of Units	AUC	Training Time in s		
GCN(sep)	0.908	128	16	0.9131	10940	Number of	Number of
GAT(sep)	0.909	512	32	0.9117	3568	Units	Parameters
GAT(gen)	0.909	128	128	0.9117	5205	16	34,911
GATGAP(gen)	0.912	1024	32	0.9115	1716	32	120,527
		512	128	0.9115	2228	64	459,951
		256	128	0.9115	2666	128	1,808,495
Einal Conf	iguration	256	32	0.9115	4061		

Final Configuration:

- GATGAP Model using PyTorch + Deep Graph Library (DGL)
- 6 layers with 4 attention heads each and 32 units for GAT output & global features _> \approx 120k parameters
- Batch size 1024 (GPU training)

Sampling Method:

Reweighting Method:

Studied reweighters:

- GBDT Reweighting
- Histogram Reweighting

Reweighting Method:

- Train a Gradient Boosting Decision Tree (GBDT) classifier with some event level variables to distinguish between True-Positve events and False-Negative events
- GBDT Reweighting: use the outputs of the classifier directly:

$$W = \frac{1}{p_{clf}} = \frac{1}{p_{TP}/p_{TP+FN}} = \frac{p_{pass_skim}}{p_{TP}}$$

 Histogram Reweighting: compare the score histogram of all the events that can pass the skim (True-Positive + False-Negative) with the score histogram of True-Positives to give each bin of score a scaling factor:

$$w = w_{bin_i|p_{clf} \in bin_i} = \frac{H_{pass_skim,i}}{H_{TP,i}} |_{p_{clf} \in bin_i}$$

Skim NN	Positive	Negative
Pass	True-Positive (TP)	False-Negative (FN)
Fail	False-Positive (FP)	True- <mark>Negative</mark> (TN)

Relative statistical uncertainty and effective sample size

Variable	Formula	Remark
NN outputs / Probabilities to pass	$\{p_i\}$	'i' refers to each event in the whole sample (batch)
Weights	$\{\omega_i\} = \left\{\frac{1}{p_i}\right\}$	Infinities (at $p_i = 0$) are excluded and set to 0 Avoid the bias by construction
Relative statistical uncertainty	$S = \frac{\sqrt{\sum \omega_i^2 p_i}}{\sum \omega_i p_i}$	$\sum \omega_i^2 p_i = \sum \omega_i$ $\sum \omega_i p_i = N$ Here consider only passed events (label = 1)
Effective sample size	$N_{eff} = \frac{1}{S^2}$	Number of events needed to reach the same statistical uncertainty without sampling

Speedup rate

Variable	Formula	Remark
Skim retention rate	r = 0.05	Probability to pass the skim process
Times of different phases in ms	$t_{gen} = 0.08$ $t_{NN} = 0.63$ $t_{SR} = 97.04$	Taken from previous studies
Effective number of events after sampling	$n_{+} = \sum p_{i}$ $n_{-} = \sum (1 - p_{i})$	$\{p_i\}$ will be devided into two subsets where the events will/won't pass the skim process
Time consuming with NN filter	$t_{+} = [n_{TP}r + n_{FP}(1 - r)](t_{gen} + t_{NN} + t_{SR})$ $t_{-} = [n_{FN}r + n_{TN}(1 - r)](t_{gen} + t_{NN})$	Positive/Negative: Result of sampling True/False: Result of sampling == skim process
Time consuming without NN	$t_0 = N_{eff} (t_{gen} + t_{NN})$	To reach the same statistical uncertainty
(Inverse) Speedup rate	$R = \frac{t_+ + t}{t_0}$	The lower the better

Robustness:

KS-Test

Test the module using $B^+ \rightarrow K^+ \nu \nu$ inclusive reconstruction

skim.WGs.ewp.inclusiveBplusToKplusNuNu

- Track cleanup:
 - p_t > 0.1
 - thetaInCDCAcceptance
 - dr<0.5 and abs(dz)<3.0
- Event cleanup:
 - 3 < nCleanedTracks < 11
- Kaon pre-cuts:
 - track cleanup + event cleanup + nPXDHits > 0
- K+ reconstruction
- Kaon cuts:
 - p_t rank=1
 - kaonID>0.01
- B+ reconstruction
- B+ cut:
 - mva_identifier: MVAFastBDT_InclusiveBplusToKplusNuNu_Skim > 0.5