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S/(S+B) weighted events / GeV

Fancy Bump Hunting
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e So much more information than just invariant mass...

e Bump hunting in higher dimensional space using ML.:
etk {o CWolLa hunting [Collins, Howe, Nachman 1902.02634]
IS ta
o ANODE [Nachman, Shih 2001.04990]
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o  CATHODE [Hallin et. al. 2109.00546]
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[Figure taken from 2109.00546]
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A Problem with Fancy Bump Hunting

e They all work very well, until they don't
o Literature: Hand-crafted useful features (i.e. observables)
m Assumes some extended knowledge about signal models
o Realistically: include irrelevant features
m Quite drastic degradation (see later slides)



Dataset Used* - LHCO R&D

e Background: QCD dijets
Signal: W -> X (->qq) Y (->qq)
e Useful features
o ™1 :mass of lighter jets
o Am :absolute difference of masses of two jets

-

J2 } N-subijettiness ratios for two jets
© o1

e Irrelevant features

o Independently drawn gaussian variables

*Accessed here
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https://zenodo.org/records/6466204

CWolLa Hunting [Collins, Howe, Nachman 1902.02634]

e [f extra features are independent of m in the background,
then an optimal* test statistic is

R ~ p(Z|m € SR)
cwola = p(Z|m € SB)

e Just train a classifier on SR vs SB, easy! «

*In the Neyman-Pearson sense
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Preventing Overfitting on Irrelevant Features

e Choice of algorithm

TABLE 10.1. Some characteristics of different learning methods. Key: &= good,
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o Trees: internal feature selection =fair, and ¥ =poor.
Py L|m|t model Complexn:y’ add regulanza“on Characteristic Neural SVM Trees MARS k-NN,
. . . Nets Kernels
o  cross-validation -> can be expensive! Nutural acdly stdsts | W W A A v
of “mixed” type
. Handling of missing values v v A A A
-> xgboost: tree-based, fast, performan —
Robustness to outliers in v v A v A
o i ) input space
ther choices also exist Insensitive to monotone v v A v v
transformations of inputs
Computational scalability v v P A v
(large N)
[ Ability to deal with irrel- v v A A v
evant inputs
R3
Ability to extract linear A A v v
R1 combinations of features
Interpretability v v N v
Predictive power A A v A
R4 RS
R2 Taken from The Elements of Statistical Learning by Hastie, 7
02 04 06 08 Tibshirani and Friedman
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CWolLa Hunting with NNs vs Trees

16 irrelevant features
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NN Generated by code at
https://github.com/HEPML-AnomalyDetection/ CATHODE



https://github.com/HEPML-AnomalyDetection/CATHODE

Bonus: Feature Importance

With hyperparameter tuning
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Another Issue with CWoLa Hunting

If extra features are independent of m in the background,
then an optimal* test statistic is

p(Z|lm € SR)
p(Zlm € SB)

Rcwola =
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Density-estimation Based Method

e Another optimal statistic:

p(Z|m)

R —
p

No extra assumption needed

(Z]m, bked)

I

This is problem
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ANODE [Nachman, Shih 2001.04990]
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Estimate from data, “easy”

Estimate by interpolation, recall
p(@, m|sig) = 0 for m ¢ SR
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Interpolation: Manual vs Auto

e “The interpolation is done automatically by the neural conditional density
estimator” [2001.04990]

o Black-box: a blessing and a curse
e Manual interpolation, a simple baseline:

p(Z|mg) — p(flmL)(

p(Z]m, bkgd) ~ p(Z|my) + m —mr)
mgr —mr
o Simple, quick to evaluate
o Linear in estimated densities
p(Z|m)

R =
p(Z|m, bkgd)
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Density Estimation With Trees

e A boosting-inspired tree-based density estimator ma and Awaya, 2101.11083]

o  Conceptually similar to normalizing flow
o Transformations built from leaf-wise constant functions
o Fast and performant

e Why?
o  Why not?
o [Ifa feature is 1 all other features, tend not to cut in such directions
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Significance Improvement
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https://github.com/HEPML-AnomalyDetection/CATHODE
https://github.com/HEPML-AnomalyDetection/CATHODE
https://github.com/HEPML-AnomalyDetection/CATHODE

More possibilities...

e More realistic model of irrelevant features (see previous talk by Marie Hein)
e Fancier interpolation schemes
e More state-of-the-art method, e.g. CATHODE
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Conclusion

e Deep learning is not all you ... need

o Important to understand types and properties of data under analysis
o Tree-based models can still be powerful in terms of performance, speed and robustness
o Quality of background interpolation remains an important issue
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Thank you for coming to my

ML4Jets
2023

talk!
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Back-up: xgboost hyperparameter optimizations

e Metric: tpr at fixed fpr=0.001

e 10 fold cross validations
e Bayesian optimization

o scan hyperparameter space via gaussian process regression
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Back-up: Correlated Features in ANODE

Shifted, correlated
2.0 - - - - =

My, shited (T€V)

1.0 T T T T T T T T
3.30 3.35 3.40 3.45 3.50 3.55 3.60 3.65
my (TeV)

3.70

p(@lm, bigc) # p(imy) + LA —2TmL)

m—mp)

my, —)mJ1+10g(mJJ)

Amy — Amy + log(myy)

22



AN

Ad-hoc-ness
warning

Back-up: A simple decorrelation scheme

m —m

r = f(z,m) } such that dCorr(x, m) is minimized

Needs to be invertible!

One simple choice: f(z,m) = ag(m) + ay(m)z

/ \

am + fm? 1 + ym + dm?
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Shifted, decorrelated
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Significance Improvement
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Back-up: Correlated gaussian noises for ANODE

—— 4 correlated gaussians
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Back-up: Copula

e Density estimation quality can often be improved by separating task of
estimating marginals and task of estimating dependence structure
e Sklar’s theorem [Sklar, 1959].

p(xy,...,xn) =c(Fi(x1),..., Fuo(z,))p(xy) - - - plxy)

e If I, isindependent of all others: C is independent of T,
o Trees can benefit from this
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Back-up: Precise definition of irrelevance

e Setofall features: {x1,...,z,}
e XI; is called irrelevant iff

o lrrelevancy is not intrinsic!
o Does notimply x;; is independent of relevant ones
o Question: How likely is an irrelevant feature dependent on relevant one?
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