Resonant Anomaly Detection in the Presence of Irrelevant Features

Yik Chuen San, Cornell University

Cornell University

ML4Jets 2023

Based on 2310.13057, with Marat Freytsis & Maxim Perelstein

Fancy Bump Hunting

- So much more information than just invariant mass...
- Bump hunting in higher dimensional space using ML:
 - **CWoLa hunting** [Collins, Howe, Nachman 1902.02634]
- This talk { ANODE [Nachman, Shih 2001.04990]
 - CATHODE [Hallin et. al. 2109.00546]

```
0 .....
```

• Assumption: $p(\vec{x}, m|sig) = 0$ for $m \notin SR$

(+ Extra assumptions)

• Data-driven!

A Problem with Fancy Bump Hunting

- They all work very well, until they don't
 - Literature: Hand-crafted useful features (i.e. observables)
 - Assumes some extended knowledge about signal models
 - Realistically: include *irrelevant* features
 - Quite drastic degradation (see later slides)

Dataset Used* - LHCO R&D

- Background: QCD dijets
 Signal: W' -> X (-> qq) Y (-> qq)
- Useful features
 - $\circ m_{J1}$: mass of lighter jets
 - $\begin{array}{c|c} \circ & \Delta m_J & : \text{absolute difference of masses of two jets} \\ \circ & \tau_{21}^{J1} \\ \circ & \tau_{21}^{J2} \end{array} \right\} \ \text{N-subjettiness ratios for two jets}$
- Irrelevant features
 - Independently drawn gaussian variables

CWoLa Hunting [Collins, Howe, Nachman 1902.02634]

• If extra features are independent of m in the background, then an optimal* test statistic is

$$R_{\text{cwola}} = \frac{p(\vec{x}|m \in \text{SR})}{p(\vec{x}|m \in \text{SB})}$$

Just train a classifier on SR vs SB, easy! U

One challenge: Overfitting

• What the classifier sees (in 2D)

• Imagine this in higher dimension with many irrelevant directions!

Preventing Overfitting on Irrelevant Features

- Choice of algorithm
 - Trees: internal feature selection
- Limit model complexity, add regularization
 - cross-validation -> can be expensive!
- -> xgboost: tree-based, fast, performan

Other choices also exist

TABLE 10.1. Some characteristics of different learning methods. Key: $\blacktriangle = good$, $\blacklozenge = fair$, and $\blacktriangledown = poor$.

Characteristic	Neural	SVM	Trees	MARS	k-NN,
	Nets				Kernels
Natural handling of data of "mixed" type		•		•	•
Handling of missing values		•			
Robustness to outliers in input space		•	•	•	•
Insensitive to monotone transformations of inputs				•	•
Computational scalability (large N)	•	•			•
Ability to deal with irrel- evant inputs	•	•	•	•	•
Ability to extract linear combinations of features	-	•	•	•	•
Interpretability	•	•			•
Predictive power			•		

Taken from *The Elements of Statistical Learning* by Hastie, Tibshirani and Friedman 7

CWoLa Hunting with NNs vs Trees

CWoLa prefers trees... 😕

NN Generated by code at https://github.com/HEPML-AnomalyDetection/CATHODE

Bonus: Feature Importance

Another Issue with CWoLa Hunting

If extra features are independent of m in the background,

then an optimal* test statistic is

$$R_{\text{cwola}} = \frac{p(\vec{x}|m \in \text{SR})}{p(\vec{x}|m \in \text{SB})}$$

Density-estimation Based Method

• Another optimal statistic:

$$R = \frac{p(\vec{x}|m)}{p(\vec{x}|m, \mathrm{bkgd})} \quad \text{No extra assumption needed}$$
 This is problem

ANODE [Nachman, Shih 2001.04990]

 $p_{\text{data}}(x|m \in SB)$

 $= p_{bg}(x|m \in SB)$

 $p_{\text{data}}(x|m \in SB)$

 $= p_{bg}(x|m \in SB)$

 $p_{\text{data}}(x|m \in SR)$

Interpolation: Manual vs Auto

- "The interpolation is done automatically by the neural conditional density estimator" [2001.04990]
 - Black-box: a blessing and a curse
- Manual interpolation, a simple baseline:

$$p(\vec{x}|m, \text{bkgd}) \approx p(\vec{x}|m_L) + \frac{p(\vec{x}|m_R) - p(\vec{x}|m_L)}{m_R - m_L}(m - m_L)$$

- Simple, quick to evaluate
- Linear in estimated densities

$$R = \frac{p(\vec{x}|m)}{p(\vec{x}|m, \text{bkgd})}$$

Density Estimation With Trees

- A boosting-inspired tree-based density estimator [Ma and Awaya, 2101.11083]
 - Conceptually similar to normalizing flow
 - Transformations built from leaf-wise constant functions
 - Fast and performant
- Why?
 - Why not?
 - If a feature is **u** all other features, tend not to cut in such directions

code at

17

More possibilities...

- More realistic model of irrelevant features (see previous talk by Marie Hein)
- Fancier interpolation schemes
- More state-of-the-art method, e.g. CATHODE

Conclusion

- Deep learning is *not* all you (should) need
 - Important to understand types and properties of data under analysis
 - Tree-based models can still be powerful in terms of performance, speed and robustness
 - Quality of background interpolation remains an important issue

Thank you for coming to my ^{ML4Jets} talk!

Back-up: xgboost hyperparameter optimizations

- Metric: tpr at fixed fpr=0.001
- 10 fold cross validations
- Bayesian optimization
 - scan hyperparameter space via gaussian process regression

n_{-} estimators	max_depth	eta	alpha	lambda	subsample
292	9	6.2×10^{-3}	50	74	0.75

Back-up: Correlated Features in ANODE

$$m_{J_1} \to m_{J_1} + \log(m_{JJ})$$

 $\Delta m_J \to \Delta m_J + \log(m_{JJ})$

$$p(\vec{x}|m, \text{bkgd}) \not\approx p(\vec{x}|m_L) + \frac{p(\vec{x}|m_R) - p(\vec{x}|m_L)}{m_R - m_L}(m - m_L)$$
 22

Back-up: A simple decorrelation scheme

$$\left. egin{array}{c} m o m \ x o f(x,m) \end{array}
ight\}$$
 such that $\operatorname{dCorr}(x,m)$ is minimized

Needs to be invertible!

NN Generated by code at https://github.com/H EPML-AnomabyDete ction/CATHODE

NN Generated by code at https://github.com/H EPML-AnomabyDete ction/CATHODE

Back-up: Correlated gaussian noises for ANODE

Back-up: Copula

- Density estimation quality can often be improved by separating task of estimating marginals and task of estimating dependence structure
- Sklar's theorem [Sklar, 1959]:

$$p(x_1,\ldots,x_n) = c(F_1(x_1),\ldots,F_n(x_n))p(x_1)\cdots p(x_n)$$

- If x_n is independent of all others: c is independent of x_n
 - Trees can benefit from this

Back-up: Precise definition of irrelevance

- Set of all features: $\{x_1, \ldots, x_n\}$
- x_i is called irrelevant iff

$$p(Y|S_i, x_i) = p(Y|S_i), \quad \forall S_i \subset \{x_1, \dots, \hat{x}_i, \dots, x_n\}$$

- Irrelevancy is *not* intrinsic!
- Does *not* imply x_i is independent of relevant ones
- Question: How likely is an irrelevant feature dependent on relevant one?

