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Introduction
Principles of jets

A good jet clustering algorithm;

1. Reveals the kinematics of the hard scattering.

2. IR and collinear safe.

3. Simple to compute for a theory.

4. Fast to compute in practice.

Universally adopted Anti-kT algorithm meets all these criteria. Difficult to improve on that.

Anti-kT is a greedy algorithm; it makes the optimum move at the current step, but cannot consider all possible
end points.

Could we imagine a non-greedy algorithm?
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The NCut objective
A good cluster

What makes something a “cluster” or jet? Consider a very small event;
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The NCut objective
by eye

Small enough to visualise easily. We can guess what should go into which jet.
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The NCut objective
Affinity

We need to express our objective algorithmically.

Affinity is a measure of how likely two particles are to be
in the same jet.

What if it was;
Aij = e−d2

ij/2σ
2

(dij is the Cambridge-Aachen distance between particles
i and j)
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The NCut objective
Weight

Let all particles be exclusively grouped in jets, J. Simply
minimising affinity between jets;

min
J

∑
K∈J

∑
i∈K ,j /∈K

Aij

creates a problem, optimal solutions tend to isolate single
particles.

Balance the jets by assigning each particle a weight, wi .

min
J

∑
K∈J

∑
i∈K ,j /∈K Aij∑

i∈K wi
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The NCut objective
Degree as weight

The degree of each point is a common choice for weight.

wi =
∑
j

Aij

Particles contribute to a cluster by home much they are
connected to other particles.

The minimisation problem becomes;

min
J

∑
K∈J

∑
i∈K ,j /∈K e−d2

ij/2σ
2∑

i∈K
∑

j e
−d2

ij/2σ
2

Prohibitive expensive to compute. 0.5 1.0 1.5 2.0 2.5
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Relaxation to obtain a solution
Spectral clustering

Let us form a graph Laplacian.
Let Zi ,j = δi ,jwi and Di ,j = δi ,j

∑
a Ai ,a, then our Laplacian is;

L = Z−1/2(D − A)Z−1/2.

▶ Each eigenvector of L has as many elements as there are particles.

▶ Perfect case; affinity between jets is zero.

▶ In this case, the eigenvectors with highest eigenvalue are piecewise-constant.

▶ Particle groups are denoted by their value in the eigenvectors.

If we apply this solution to real (imperfect) cases, it is a relaxation

There is an elegant proof of this, too long for this talk (see backup slides).
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IR and collinear safety
Problem

min
J

∑
K∈J

∑
i∈K ,j /∈K e−d2

ij/2σ
2∑

i∈K
∑

j e
−d2

ij/2σ
2

This isn’t IRC safe.

▶ Collinear splitting in a jet will add new connections
between jets, and massively modify the weight.

▶ Soft emissions will be just as impactful as every
other particle, modifying connections and weights.
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IR and collinear safety
An ugly solution

Return to a greedy agglomerative algorithm?

1. Modify the weight, to scale with degree at larger
pT, and with pT at smaller pT.

2. Use the relaxed NCut objective to get an
alternative distance metric.

3. Modify this distance so that at low angular
separation it goes to zero.

4. Merge the closest pair.

5. Repeat.
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Ugly computational complexity
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Measurements of the runtime would indicate that this is approximately O(N3).
That’s actually optimistic.

▶ The most expensive element is the eigenvalue calculation, in theory O(N3).

▶ But this method repeats the eigenvalue calculation up to N times.

▶ So run time could be as bad as O(N4).

This is not a tractable in realistic HEP applications.
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Ugly solution; good results

H125GeV → h40GeVh40GeV → bb̄bb̄
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Computational complexity
Chebyshev approximation

There is a second trick that we can use Chebyshev approximation of the eigenvectors, developed by
arXiv:0912.3848.
Very roughly;

▶ A matrix multiplied onto a vector can only return the same vector if that vector is an eigenvector.

▶ We can approximate the eigenvectors by repeatedly applying the matrix to a random vector, it must
converge to an eigenvector. (This is the QR algorithm.)

▶ Eigenvectors must be orthonormal.

▶ In a localised area, an orthonormal basis can be approximated by a set of Chebyshev polynomials.

▶ This gives us access to subsequent eigenvectors.

This brings the eigenvector calculation down to O(N2). If we could avoid the agglomerative step, this could
create a O(N2) clustering.
Which gives us the acronym Chebyshev Approximated Laplacian Eigenvectors.

https://arxiv.org/pdf/0912.3848.pdf
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IR and collinear safety
Affinities

Focus on the numerator;

min
J

∑
K∈J

∑
i∈K ,j /∈K Aij∑

i∈K wi

For equality under the collinear splitting of j → a, b;
Aij = Aia + Aib for any i .

This is achieved by;

Aij = pTipTje
−d2

ij/2σ
2

which also makes the affinities of any soft emission van-
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IR and collinear safety
Weights

Then the denominator;

min
J

∑
K∈J

∑
i∈K ,j /∈K Aij∑

i∈K wi

For equality under the collinear splitting of j → a, b;
wj = wa + wb.

This is achieved by;

wj = pTj

which also makes the affinities of any soft emission van-
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IR and collinear safety
Better solution

Our objective is

min
J

∑
K∈J

∑
i∈K ,j /∈K Aij∑
i∈K pTi

with

Aij = pTipTje
−d2

ij/2σ
2

This is IR and collinear safe.
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Computational complexity
Elegant solution

Timing now goes as O(N2) for the whole jet formation.

▶ There is a significant setup overhead, a more careful implementation would be needed to determine if this
could be avoided.

▶ This is in line with a naive implementation of the anti-kT algorithm.

▶ Like the anti-kT algorithm, this could be taken to O(N logN) with appropriate localisation.
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Current results
Requires work

H125GeV → h40GeVh40GeV → bb̄bb̄

0 1 2 3 4
Jet Multiplicity

0

5000

10000

15000

20000

25000

30000

35000

AntiKT(0.4)
AntiKT(0.8)
CALE

0 50 100 150 200
Mass (GeV)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Fr
eq

ue
nc

y 
de

ns
it
y

12
5.

0 
G

eV

Heavy higgs

0 20 40 60
Mass (GeV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

40
.0

 G
eV

SM Higgs with stronger signal

0 20 40 60
Mass (GeV)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

40
.0

 G
eV

SM Higgs with weaker signal

AntiKTp4Jet  
AntiKTp8Jet
CALE

Mass peak is no longer an improvement on the anti-kT algorithm, and also seen to be more fragile in the
parameter ranges.
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Conclusion

▶ If it could be efficiently implemented, the NCut objective would offer a nice improvement to jet definitions.

▶ It offers an explicit objective, and good signal selection, even in the presence of pileup.

▶ Improving efficiency is challenging, but tools are available, and we are making progress in this direction.

Thank you for your attention!
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Backup; performance on heavier Higgs
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Backup; performance on semileptonic top
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Backup; Spectral Clustering
Relaxation and proof

Theory behind spectral clustering; https://arxiv.org/abs/0711.0189
Points to be clustered are considered as nodes of a graph. Label j = 1 . . . n.
Between, each pair, an ‘affinity’ is defined. Larger affinities for points that should be allocated to the same
group. This results in a square matrix;

A =


0 a1,2 a1,3 · · · a1,n

a2,1 0 a2,3 · · · a2,n
a3,1 a3,2 0 · · · a3,n
...

...
...

. . .
...

an,1 an,2 an,3 · · · 0


︸ ︷︷ ︸

n


n

For problems involving spatially distributed points, it is conventional to use a Gaussian kernel to define the
affinity from the distance;

ai ,j = exp

(
−d2

i ,j

σv

)

https://arxiv.org/abs/0711.0189
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Backup; Spectral Clustering
Relaxation and proof

▶ Denote a choice of clusters Gk, where the index k = 1 . . . s is an index over the clusters.

▶ The set of all points outside cluster Gk is denoted Ḡk.

▶ W (Gk, Ḡk) is all the affinities severed by separating Gk from the rest of the graph.

W (Gk, Ḡk) =
∑

i∈Gk,j∈Ḡk

ai ,j

As stated earlier, minimising
∑

kW (Gk, Ḡk) tends to lead to uneven groups. The solution is to assign each
cluster a weight vol(Gk), indicating how much of the graph it contains. One possible choice is the sum of all
affinities connecting to points in the cluster;

vol(Gk) =
∑
i∈Gk,j

ai ,j

In the new objective function, the cost of creating each group is divided by it’s weight;

NCut =
∑
k

W (Gk, Ḡk)

vol(Gk)



Backup; Spectral Clustering
Relaxation and proof

Unfortunately, actually minimising this objective is NP hard (computationally intractable).

NCut =
∑
k

W (Gk, Ḡk)

vol(Gk)

However, there is a relaxed version, which is solvable in O(n2).
The clusters could be fully determined by s indicator vectors;

hk,i =


1√

vol(Gk )
if i ∈ Gk

0 otherwise

Let D be a square, diagonal matrix, where Di ,i =
∑

j ai ,j . The unnormalised Laplacian can then be written as;

L = D − A =



∑
j a1,j −a1,2 −a1,3 · · · −a1,n

−a2,1
∑

j a2,j −a2,3 · · · −a2,n
−a3,1 −a3,2

∑
j a3,j · · · −a3,n

...
...

...
. . .

...
−an,1 −an,2− an,3 · · ·

∑
j an,j


︸ ︷︷ ︸

n


n



Backup; Spectral Clustering
Relaxation and proof

Multiplying this Laplacian by a matching pair of indicator vectors;

h′kLhk =
∑
i ,j

hk,iLi ,jhk,j

=
∑
i ,j

hk,i

(
δi ,j
∑
p

ai ,p − ai ,j

)
hk,j

=
∑
i

h2k,i
∑
p

ai ,p −
∑
j

hk,ihk,jai ,j


=
∑
i ,j

ai ,j
(
h2k,i − hk,ihk,j

)
=
1

2

∑
i ,j

ai ,j (hk,i − hk,j)
2

Using the definition of the indicator vector;
If both i and j are outside Gk then hk,i = hk,j = 0, so the last term vanishes.
If both i and j are inside Gk then hk,i = hk,j , so the last still term vanishes.
So only the cross terms remain.
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Condensing this down;

h′kLhk =
1

2

∑
i∈Gk,j∈Ḡk

ai ,j (hk,i − hk,j)
2

=
1

2

∑
i∈Gk,j∈Ḡk

ai ,j√
vol(Gk)

2

Which looks is exactly what we wanted to minimise.



Backup; Spectral Clustering
Relaxation and proof

The objective has been rephrased as;

h′kLhk =
1

2

∑
i∈Gk,j∈Ḡk

ai ,j
vol(Gk)

Now recall the Rayleigh quotient, and the min-max theorem, which states that;

given a Hermitian matrix M
the vector x (with ||x || = 1) that minimises x ′Mx

is the eigenvector of M corresponding to the smallest eigenvector.

This is almost what we need. Two problems;

1. Our hk are not normalised, ||hk|| ≠ 1.
Solvable; make the normalisation, then absorb it into the definition of the Laplacian.

h′kLhk → h′kD
−1/2LD−1/2hk

so define
Lsymm = D−1/2LD−1/2

.

2. The min-max theorem does not in general produce piecewise-constant x , so the x will not have the form
defined for the hk. Not solvable; this is the relaxation.



Backup; Spectral Clustering
Relaxation and proof

To summarise;
The objective is to find clusters that minimise

NCut =
∑
k

W (Gk, Ḡk)

vol(Gk)

.
This is equivalent to finding hk that minimise

h′kLsymmhk

where Lsymm = D−1/2(D − A)D−1/2.
Solving that directly is NP hard, but if hk is exchanged for a vector, x , whose values are only required to be
normalised, then

x ′Lsymmx

is minimised by the eigenvectors of Lsymm corresponding to the smallest eigenvalue.
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