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Surrogates for Galorimeter showers

« Calorimeter shower simulation is a costly

3d view Front view

step in the simulation pipeline

* As experiment luminosity and calorimeter

granularity increase, this bottleneck worsens

» This motivates the development of fast

surrogate models in a bid to alleviate this
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https://calochallenge.github.io/homepage/

Latent Diffusion

Rombach et al: arXiv:2112.10752v2 [cs.CV]

 Main idea:

a) Map the data into a reduced latent space

representation using a variational autoencoder

¢: Encoder yr: Decoder

b) Train a diffusion model in the VAE bottleneck
c) Generate samples X = lll(e(z)), z~N(0,1)

Data x Latent learned by Reconstruction x . Motivation:

diffusion model

* Reduced data dimensionality, diffusion models

are in general slower to sample from than other

Forward noising process generative models. If we only diffuse in the latent,
(data = noise)

we should speed up sample generation

+ Better reconstruction, we can generate samples

0 -
using an approximation of the “true” latent instead
- < of a multivariate normal
Reverse denoising process . . . . .
(noise > data) *  Generation speed exclusively determined by diffusion

model and decoder; encoder only relevant at train time
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https://arxiv.org/abs/2112.10752v2

Variational AutoEncoders (VAES)

VAEs: D. Kingma, M.Welling arXiv:1312.6114v11 [stat.ML]

* In latent diffusion, having a good VAE backbone is crucial
* The upper bound of the latent diffusion is set by the VAE i.e,

latent diffusion model can only be as good as or worse than X =

¢: Encoder y: Decoder lll(d)(x))
« With VAE’s there is a balancing act happening:

*  With minimal regularization (small ), the VAE excels in
Latent: R® ReCO[‘?ﬂg’gCtion reconstruction, however, the latent representation may lack

: smoothness. This would necessitate a more elaborate

Lyag = Eqyx |- log py (X |Z) | + BKL[q4 (z]x) |p(2)] diffusion model to capture the complexity. More elaborate
= longer sampling time!
1 1 1 « With B = 1 the latent space well be be more gaussian, a
Reconstruction Regula.risation Regularisation simpler diffusion model can be used since you are trying to
term weight term

map almost gaussian ->gaussian. Simpler == shorter
sampling time. However, with heavy regularisation we

sacrifice reconstruction quality!


https://arxiv.org/abs/1312.6114v11

Score-hased Generative Modelling

Score Models: Song et al arXiv:2011.13456v2 [cs.LG]

Drift coefficient

. . - Wiener Process
Diffusion coefficient

X(0) | dx = f(x, t)dt + g(t)dw .

Wiener Process in
reverse time

* Choose f and g so that the convolving kernel is a gaussian  Score Function

* Generate samples from solving reserve SDE

A Not real sample from latent space. Representational only!
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https://arxiv.org/abs/2011.13456v2

CaloLatent: The Three Musketeers

ResNet: He et al arXiv:1512.03385v1 [cs.CV]

Energy per Layer Score

Model Variational Autoencoder Latent Score Model
* Used to learn the energy per  Encoder: 8.8M params. * ResNet: 6.5M params.
layer distribution  Decoder: 1.9M params. * Trained independently for 250
* ResNet: 3 layers, 512 » Trained for 500 epochs epochs after VAE and Layer
nodes «  Minimal KL: B = 1e7© model

« Trained independently for

500 epochs 0 All models trained using 4 A100 GPUs, total training time < 36 hours 6


https://arxiv.org/abs/1512.03385v1

Model Architecture: VAE Encoder

Latent Samples
« The VAE backbone for CaloLatent is a 3D
|
‘ p \ | o | convolutional neural network with residual

blocks.

* Reduce data dimensionality from 6408 -
1008
* Increase the number of channels from 1 2>

N=2 |  Downsamplng Block \ 64 > 128 - 256 as we down sample to

[ Average Pooling 3D ]

i

N=3 [' Residual Block ]

account for information loss

* Only apply attention in final residual blocks

[ outs ] « Decoder is inversion of Encoder, however,
Inputs

doesn’t have residual blocks after up

sampling.



~
o

D
o

[T T[T [T [ oot

Mean Energy [GeV]
(&)
o

40
30
20
10
0

— 50

2

v O

(&)

c

o

5 -50

£

— VAE-+Diffusion, EMD :0.8

— VAE, EMD :0.45
----- Geant4

[
2

|J\I\|I\\Il\I\lllllll\ll\ll\llll\ll‘l

| | 1
4 6 8
r-bin

Mean Energy [GeV]

~

Difference. (%)

©
N
o

0
o
S

~
M
a

~
)
S

-5

o

0

i —— VAE-+Diffusion, EMD :0.18 =
- —— VAE, EMD :0.42 .
:_ ----- Geant4 _:
:I | L L 1 L | 1 L 1 1 | L 1 L L | L L 1 L | 1 L L 1 | L L L L | I:
_I | 1 T T i | 1 1 T T | T I 1 1 | i 1 T 1 | T i 1 1 | 1 T i 1 | I_
:I | L L 1 L | 1 L 1 1 | L 1 L L | L L 1 L | 1 L L 1 | L L L L | I:
0.0 2.5 5.0 7.5 10.0 125 15.0
a-bin

B [¢2] 2]

Mean deposited energy [GeV]
N

(o)
o O

o

Difference. (%)
2

T T T T T T T T T T T T T L

— VAE-+Diffusion, EMD :0.17
— VAE, EMD :0.14 |
------ Geant4

!
i

Layer number



— VAE-+Diffusion, EMD :0.01
VAE, EMD :0.03

r-width

o
no

L L L L L Y I L ) L L B

|

e b

o-width

LA L N B LA

T

o
N
a0

L L

— VAE-+Diffusion, EMD :0.03
—— VAE, EMD :0.03
----- Geant4

1 VAE+Diffusion, EMD :0.76
(1 VAE, EMD :0.26
... Geant4

T T T T T T T

Normalized entries

Ll

Ll

1
L Lol L Lo i

(o)
o

0
o

Ll

T

T

0
o

T T T T

VoY
A4

o

(=)

o

o
S

Ll

T T

F_Y P_Y O r_Y
e 7 e ed

L Lol L |

o
o

Difference. (%)

Layer number

Difference. (%)

Layer number

Difference. (%)

(x:) = 2; Xij Ej
) 1/ —

102 103
Deposited energy [GeV]



Model Evaluation: Sample Quality

Calorimeter Challenge Classifier Metrics (Model

vs Geant4)

Classifier Inputs VAE VAE + Diffusion
Low-level 0.9951 /0.8748 0.9865 / 0.7868
Norm. Low-level 0.9947 /0.8907 0.9808 /0.7614
High-level 0.9924 / 0.8462 0.9662 / 0.6595

* Optimal AUC/JSD: 0.5/0.0
* Low-level & Voxel level variables
* High-level - Histogram level Variable

 VAE + Diffusion - CalolLatent

Alternative Classifier Formulation ( VAE
vs CaloLatent)
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Model Evaluation: Sampling Time

Geant4 0(10%)
CaloScore 5.8
CaloScore V2* 27.8
CaloLatent 1.9

« All models evaluated using a single A100 GPU
e (CaloScore V2 trains an additional student teacher model to

reduce evaluation time to 0.01s for 100 showers
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Looking at a random slice of the diffusion latent,
compared to the "true latent” produced by the
encoder

Summary

Have introduced CaloLatent, a latent diffusion-based
model

Demonstrated promising sample generating abilities,
with plenty of room for improvement

Demonstrated faster sampling time compared to similar

published diffusion models

Further development

Improve latent models' ability to capture latent distribution
« Larger/different architecture
« Hyperparameter optimisation

Improve sample generation
« Larger latent

« Larger en r
arger encode 1



