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Surrogates for Calorimeter showers

2Fast Calorimeter Simulation Challenge
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• Calorimeter shower simulation is a costly 

step in the simulation pipeline
• As experiment luminosity and calorimeter 

granularity increase, this bottleneck worsens
• This motivates the development of fast 

surrogate models in a bid to alleviate this 

problem
• We focus on the dataset 2 of the fast 

calorimeter challenge to evaluate our 
proposed surrogate model

• 45 x 16 x 9 = 6480

https://calochallenge.github.io/homepage/


Latent Diffusion
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𝛟: Encoder

Rombach et al: arXiv:2112.10752v2 [cs.CV]

Data 𝐱 Reconstruction 2𝐱Latent learned by 
diffusion model

Reverse denoising process
(noise à data)

Forward noising process 
(data à noise)

𝛙: Decoder

• Main idea:
a) Map the data into a reduced latent space 

representation using a variational autoencoder

b) Train a diffusion model in the VAE bottleneck

c) Generate samples #𝐱 = 	𝛙 𝛉 𝒛 , 𝐳	~	𝒩(𝟎, 𝐈)

• Motivation:
• Reduced data dimensionality, diffusion models 

are in general slower to sample from than other 
generative models. If we only diffuse in the latent, 

we should speed up sample generation
• Better reconstruction, we can generate samples 

using an approximation of the “true” latent instead 

of a multivariate normal
• Generation speed exclusively determined by diffusion 

model and decoder; encoder only relevant at train time 

𝛉

https://arxiv.org/abs/2112.10752v2


Variational AutoEncoders (VAEs)
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𝛟: Encoder

VAEs: D. Kingma, M.Welling arXiv:1312.6114v11 [stat.ML]

ℒ!"# =	𝔼$!(𝐳|𝐱) − log 𝑝* 𝐱	 𝐳)	 + 𝛽KL[ 3𝑞+ 𝐳 𝐱 𝑝(𝐳)]

Reconstruction 
term

Regularisation 
term

Data 𝐱:	ℝ𝐃 Reconstruction 
#𝐱: ℝ𝐃

Latent: ℝ𝐝

𝛙: Decoder

• In latent diffusion, having a good VAE backbone is crucial
• The upper bound of the latent diffusion is set by the VAE i.e, 

latent diffusion model can only be as good as or worse than #𝐱 =

𝛙 𝛟 𝐱

• With VAE’s there is a balancing act happening:
• With minimal regularization (small β	), the VAE excels in 

reconstruction, however, the latent representation may lack 

smoothness. This would necessitate a more elaborate 
diffusion model to capture the complexity. More elaborate 
= longer sampling time!

• With β = 1 the latent space well be be more gaussian, a 
simpler diffusion model can be used since you are trying to 

map almost gaussian àgaussian. Simpler == shorter 
sampling time. However, with heavy regularisation we 
sacrifice reconstruction quality!

Regularisation 
weight

https://arxiv.org/abs/1312.6114v11


Score-based Generative Modelling
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Score Models: Song et al arXiv:2011.13456v2 [cs.LG]

𝐗(𝟎)

𝐗(𝟎)

𝐗(𝐓)

𝐗(𝐓)d𝐱 = 𝐟 𝐱, 𝑡 𝑑𝑡 + 𝑔 𝑡 d𝐰	

d𝐱 = 𝐟 𝐱, 𝑡 𝑑𝑡	 − 𝑔, 𝑡 ∇-	log	𝑝. 𝐱 𝑑𝑡	 + 𝑔 𝑡 dB𝐰	

Drift coefficient

Diffusion coefficient Wiener Process

Wiener Process in 
reverse timeScore Function• Choose f and g so that the convolving kernel is a gaussian

• Generate samples from solving reserve SDE

Not real sample from latent space. Representational only!

https://arxiv.org/abs/2011.13456v2


CaloLatent: The Three Musketeers
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Energy per Layer Score 
Model Variational Autoencoder Latent Score Model

Time 
Conditioning

Layer Energy Incident 
Energy Voxels Time 

Conditioning

• Used to learn the energy per 
layer distribution

• ResNet: 3 layers, 512 

nodes
• Trained independently for 

500 epochs

• Encoder: 8.8M params.
• Decoder: 1.9M params.

• Trained for 500 epochs

• Minimal KL: 𝜷 = 	𝟏𝒆'𝟔

• ResNet: 6.5M params.
• Trained independently for 250 

epochs after VAE and Layer 

model

ResNet: He et al arXiv:1512.03385v1 [cs.CV]

All models trained using 4 A100 GPUs, total training time < 36 hours

https://arxiv.org/abs/1512.03385v1


Model Architecture: VAE Encoder
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• The VAE backbone for CaloLatent is a 3D 

convolutional neural network with residual 
blocks.

• Reduce data dimensionality from 6408 à 
1008

• Increase the number of channels from 1 à 

64 à 128 à 256 as we down sample to 
account for information loss

• Only apply attention in final residual blocks
• Decoder is inversion of Encoder, however, 

doesn’t have residual blocks after up 

sampling.



Results
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Results 
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𝛔𝐢 = 𝐱𝐢𝟐 	− 𝐱𝐢 𝟐 , 𝐱𝐢 =
𝚺𝐣	𝐱𝐢,𝐣	𝐄𝐣
𝚺𝐣𝐄𝐣



Model Evaluation: Sample Quality 
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Calorimeter Challenge Classifier Metrics (Model 
vs Geant4)

AUC/JSD
Classifier Inputs VAE VAE + Diffusion

Low-level 0.9951	/	0.8748 0.9865	/	0.7868
Norm. Low-level 0.9947	/	0.8907 0.9808	/	0.7614

High-level 0.9924	/	0.8462 0.9662	/	0.6595

Alternative Classifier Formulation ( VAE 
vs CaloLatent)

• Optimal AUC/JSD: 0.5 / 0.0

• Low-level à Voxel level variables
• High-level à Histogram level Variable

• VAE + Diffusion à CaloLatent



Model Evaluation:  Sampling Time 
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Model Time to 100 Showers [s]

Geant4 𝒪(10&)

CaloScore 5.8
CaloScore V2* 27.8

CaloLatent 𝟏. 𝟗

• All models evaluated using a single A100 GPU

• CaloScore V2 trains an additional student teacher model to 

reduce evaluation time to 0.01s for 100 showers



Conclusion
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• Have introduced CaloLatent, a latent diffusion-based 
model

• Demonstrated promising sample generating abilities, 

with plenty of room for improvement

• Demonstrated faster sampling time compared to similar 

published diffusion models

Looking at a random slice of the diffusion latent, 
compared to the ”true latent” produced by the 

encoder

Further development

• Improve latent models' ability to capture latent distribution
• Larger/different architecture

• Hyperparameter optimisation 

• Improve sample generation

• Larger latent

• Larger encoder

Summary


