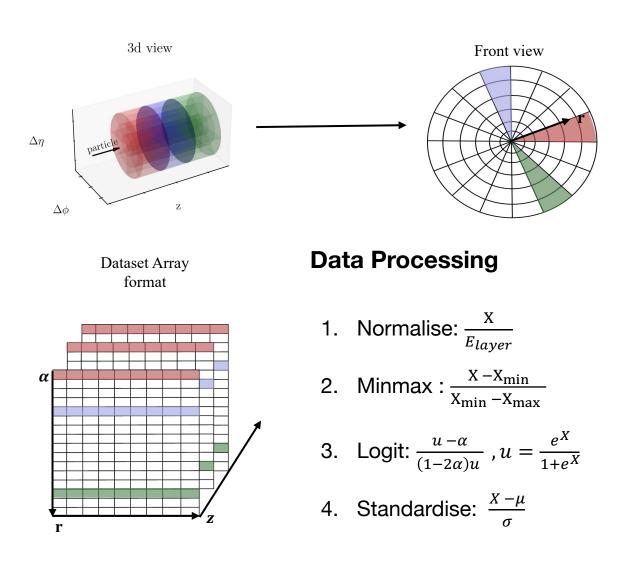


CaloLatent: Score-based Generative Modelling in the Latent Space for Calorimeter Shower Generation

Thandikire Madula: UCL

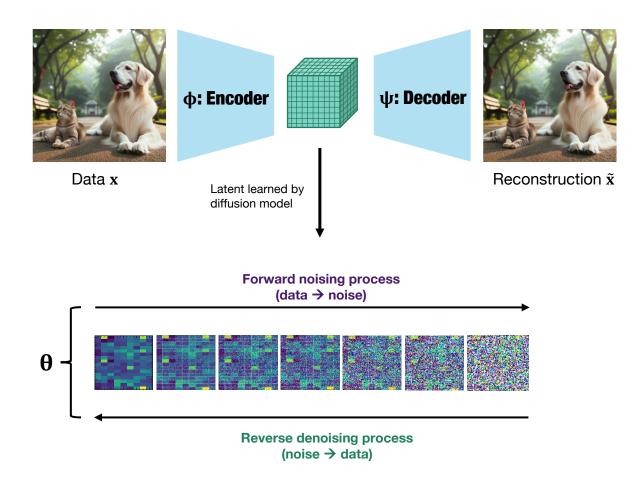
Vinicius M. Mikuni: NERSC

Surrogates for Calorimeter showers



- Calorimeter shower simulation is a costly step in the simulation pipeline
- As experiment luminosity and calorimeter granularity increase, this bottleneck worsens
- This motivates the development of fast surrogate models in a bid to alleviate this problem
- We focus on the dataset 2 of the fast calorimeter challenge to evaluate our proposed surrogate model
- 45 x 16 x 9 = 6480

Latent Diffusion

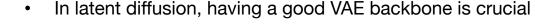


Rombach et al: arXiv:2112.10752v2 [cs.CV]

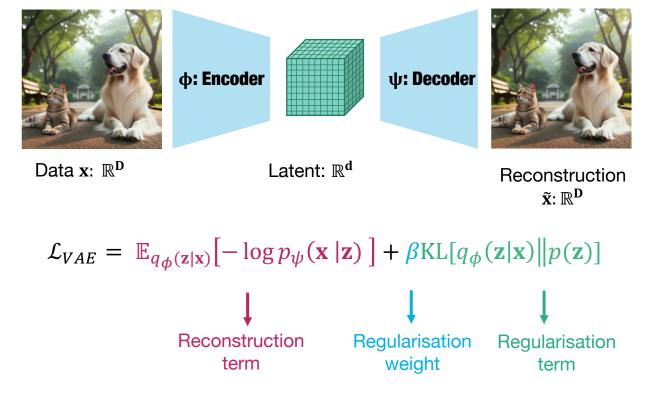
- Main idea:
 - Map the data into a reduced latent space
 representation using a variational autoencoder
 - b) Train a diffusion model in the VAE bottleneck
 - c) Generate samples $\tilde{\mathbf{x}} = \psi(\theta(z)), z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- Motivation:
 - Reduced data dimensionality, diffusion models are in general slower to sample from than other generative models. If we only diffuse in the latent, we should speed up sample generation
 - Better reconstruction, we can generate samples using an approximation of the "true" latent instead of a multivariate normal
- Generation speed exclusively determined by diffusion model and decoder; encoder only relevant at train time

Variational AutoEncoders (VAEs)

VAEs: D. Kingma, M.Welling arXiv:1312.6114v11 [stat.ML]

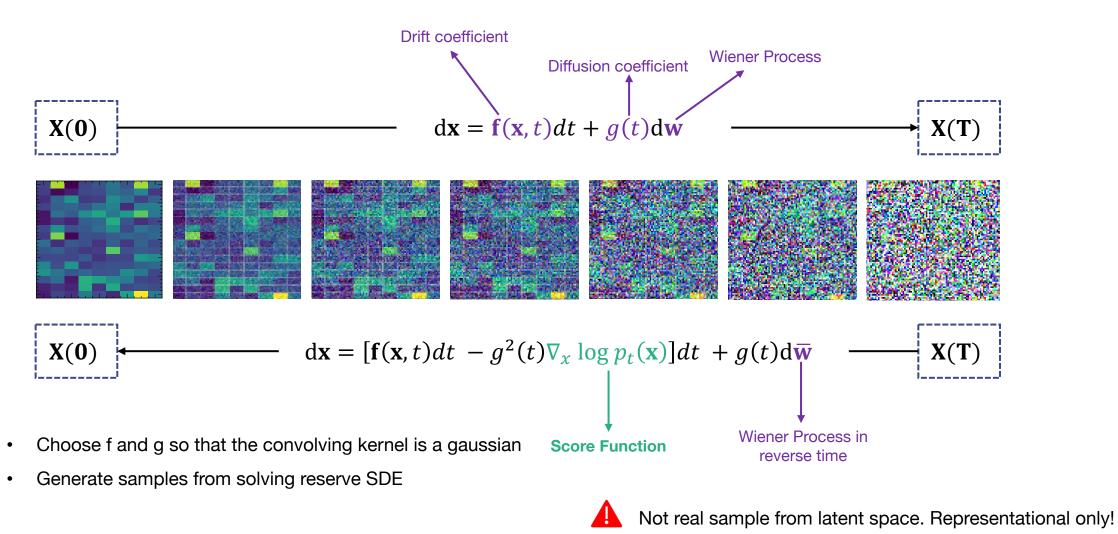


- The upper bound of the latent diffusion is set by the VAE i.e, latent diffusion model can only be as good as or worse than $\tilde{x} = \psi(\varphi(x))$
- With VAE's there is a balancing act happening:
 - With minimal regularization (small β), the VAE excels in reconstruction, however, the latent representation may lack smoothness. This would necessitate a more elaborate diffusion model to capture the complexity. More elaborate
 = longer sampling time!
 - With β = 1 the latent space well be be more gaussian, a simpler diffusion model can be used since you are trying to map almost gaussian → gaussian. Simpler == shorter sampling time. However, with heavy regularisation we sacrifice reconstruction quality!



Score-based Generative Modelling

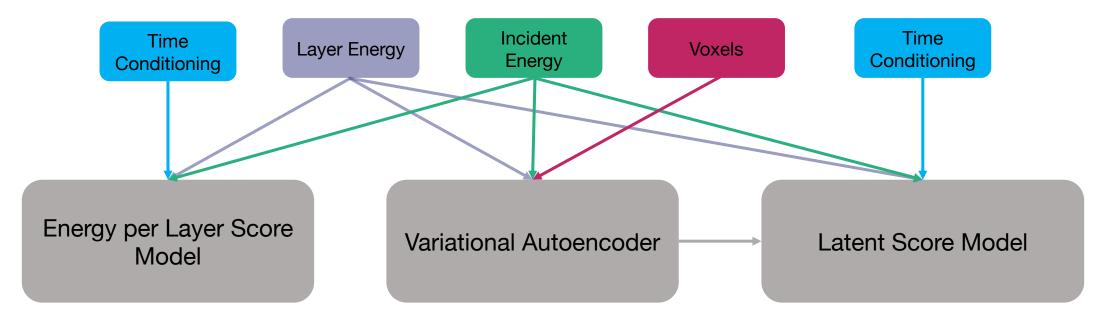
Score Models: Song et al arXiv:2011.13456v2 [cs.LG]



5

CaloLatent: The Three Musketeers

ResNet: He et al arXiv:1512.03385v1 [cs.CV]



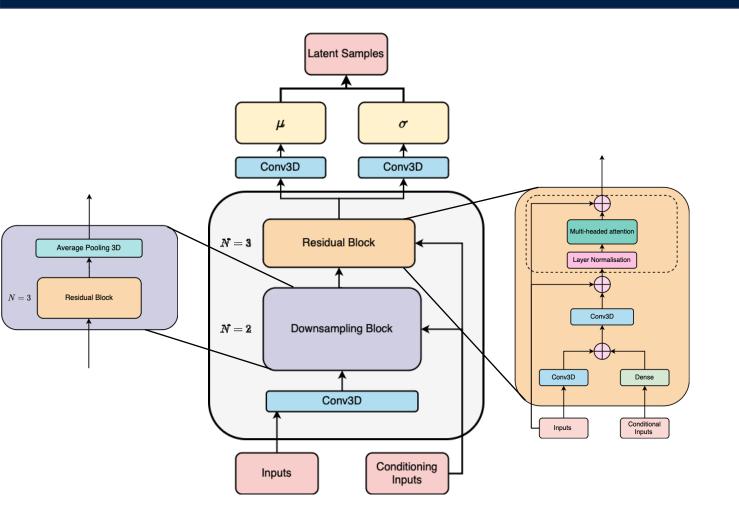
- Used to learn the energy per layer distribution
- ResNet: 3 layers, 512
 nodes
- Trained independently for 500 epochs

- Encoder: 8.8M params.
- Decoder: 1.9M params.
- Trained for 500 epochs
- Minimal KL: $\beta = 1e^{-6}$

- ResNet: 6.5M params.
- Trained independently for 250 epochs after VAE and Layer model

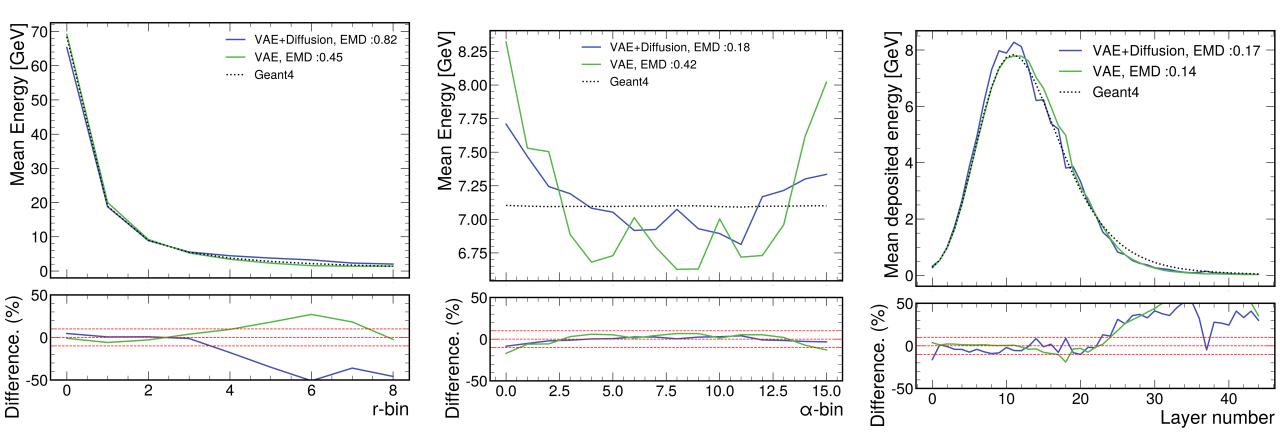
All models trained using 4 A100 GPUs, total training time < 36 hours

Model Architecture: VAE Encoder



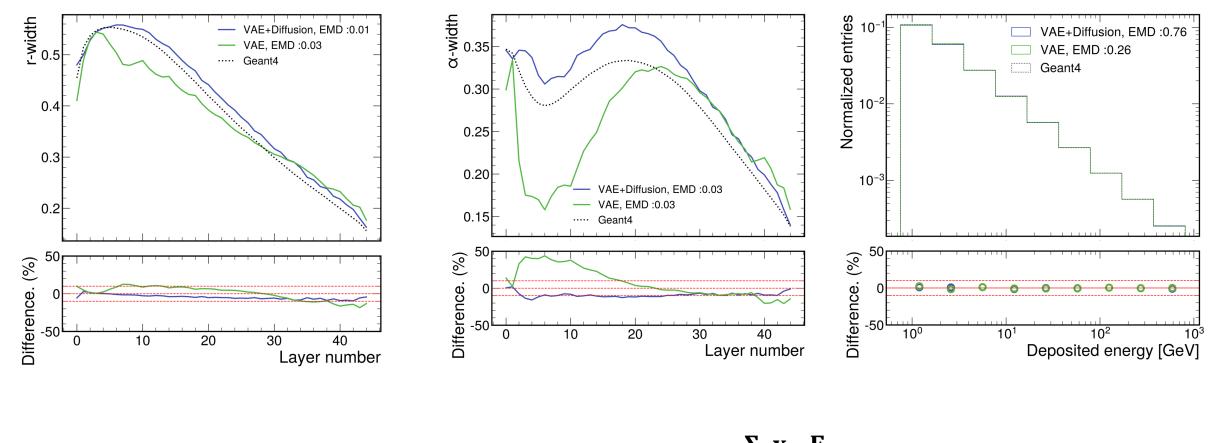
- The VAE backbone for CaloLatent is a 3D convolutional neural network with residual blocks.
- Reduce data dimensionality from 6408 → 1008
- Increase the number of channels from 1 →
 64 → 128 → 256 as we down sample to account for information loss
- Only apply attention in final residual blocks
- Decoder is inversion of Encoder, however, doesn't have residual blocks after up sampling.

Results



8

Results



$$\sigma_i = \sqrt{\langle x_i^2
angle - \langle x_i
angle^2}$$
 , $\langle x_i
angle = rac{\Sigma_j \, x_{i,j} \, E}{\Sigma_j E_j}$

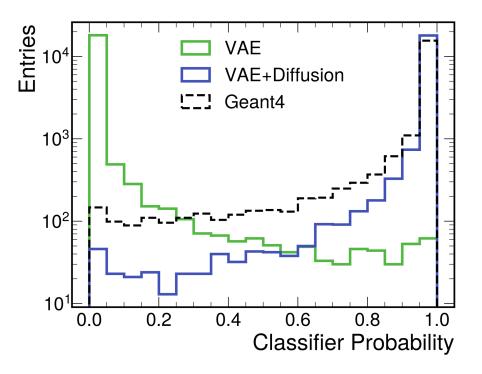
Model Evaluation: Sample Quality

Calorimeter Challenge Classifier Metrics (Model vs Geant4)

	AUC/JSD	
Classifier Inputs	VAE	VAE + Diffusion
Low-level	0.9951 / 0.8748	0.9865 / 0.7868
Norm. Low-level	0.9947 / 0.8907	0.9808 / 0.7614
High-level	0.9924 / 0.8462	0.9662 / 0.6595

- Optimal AUC/JSD: 0.5 / 0.0
- Low-level \rightarrow Voxel level variables
- High-level → Histogram level Variable
- VAE + Diffusion \rightarrow CaloLatent

Alternative Classifier Formulation (VAE vs CaloLatent)

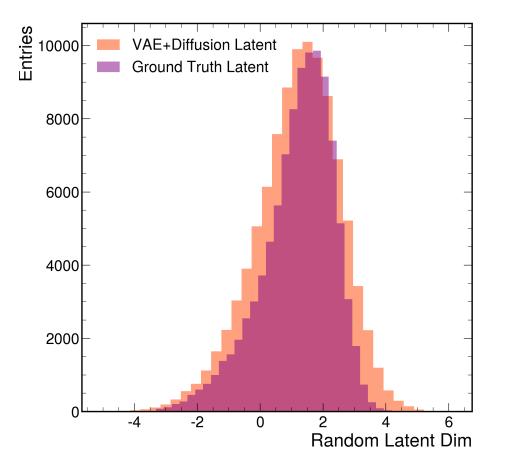


Model Evaluation: Sampling Time

Model	Time to 100 Showers [s]	
Geant4	$\mathcal{O}(10^4)$	
CaloScore	5.8	
CaloScore V2*	27.8	
CaloLatent	1.9	

- All models evaluated using a single A100 GPU
- CaloScore V2 trains an additional student teacher model to reduce evaluation time to 0.01s for 100 showers

Conclusion



Looking at a random slice of the diffusion latent, compared to the "true latent" produced by the encoder

Summary

- Have introduced CaloLatent, a latent diffusion-based model
- Demonstrated promising sample generating abilities, with plenty of room for improvement
- Demonstrated faster sampling time compared to similar published diffusion models

Further development

- Improve latent models' ability to capture latent distribution
 - Larger/different architecture
 - Hyperparameter optimisation
- Improve sample generation
 - Larger latent
 - Larger encoder