Time-of-Flight Estimation using Machine Learning Techniques

Konrad Helms ML4Jets, November 6, 2023

HELMHOLTZ

Time-of-Flight and Particle Identification

- > time-of-flight (TOF) estimation for hadron showers ⇒ particle identification
- > for $p \lesssim \mathcal{O}(10 \,\text{GeV}) : \pi^{\pm} \text{ vs. } K^{\pm} \text{ vs. } \overset{\leftrightarrow}{p}$
- > particle identified by electric charge &

$$m_0 = rac{p \cdot \text{TOF}}{\ell_{\text{track}}} \sqrt{1 - \left(rac{\ell_{\text{track}}}{(\text{TOF-c})}
ight)^2}$$

> case study: International Linear Collider + International Large Detector

Benchmark Time-of-Flight Estimator

- > select hits closest to track extrapolation into ECal in first 10 layers
- > correct measured hit time by travel time to detection position, assuming velocity c

Track extrapolation vector

Dataset

RANSAC

- outliers in space and time >
- random sample consensus (RANSAC) algorithm used for outlier rejection >
- > fit affine function: t vs. d(ECal, hit)
- > if $(t_i \text{RANSAC pred}_i) \le 0.5 \text{ ns: keep hit, else: reject}$

Pan

EPiC Regression

> 3 equivariant point cloud (EPiC) layers from

EPiC-GAN: arXiv:2301.08128

E. Buhmann, G. Kasieczka, J. Thaler for encoding of input

- > connect global with local information
- > 4 layer MLP for TOF regression based on encoded input

Simpler: ConvNet

- > 1D convolutions along *x*, *y*, *z*, *e*, *t* for encoding of input
- > relies on ordering \Rightarrow kernels move along shower development direction
- > 4 layer MLP for TOF regression

Results

- > EPiC regression & ConvNet beat ILD benchmark
- > smaller RMS90, less biased

Network	RMS90	μ_{90}
Benchmark	23.62 ± 0.02	9.73 ± 0.03
EPiC	15.00 ± 0.02	6.17 ± 0.01
ConvNet	18.18 ± 0.02	-0.48 ± 0.02

%

85

10

5

type	<i>m</i> [MeV]	%
π^{\pm}	140	85
K^{\pm}	490	10
(_)	940	5

> 'mass classes':

Hypothesis

- 1. well-learned $m_1 \simeq m_{\pi^{\pm}}$
- 2. approximate $m_2 \simeq m_p$
- > { [x, y, z, e, t]_{*i*} \oplus [$\ell_{track}, \rho, \rho_T, \rho_x, \rho_y, \rho_z, x_{ECal}, y_{ECal}, z_{ECal}$] | $i = 1 \dots n_{hits}$ } × $n_{showers}$
- > what the network does:
- 1. rough TOF estimate, based hit times
- 2. estimates corresponding mass class: $m_{1,2} = \frac{p \cdot \text{TOF}}{\ell_{\text{track}}} \sqrt{1 \left(\frac{\ell_{\text{track}}}{(\text{TOF-c})}\right)^2}$
- 3. corrects rough TOF estimate, based on: TOF = $\sqrt{\left(\frac{m_{1,2}\ell_{\text{track}}}{p}\right)^2 + \left(\frac{\ell_{\text{track}}}{c}\right)^2}$

Testing the Hypothesis — Mass Class 1 Assuming all Particles are π^{\pm}

	type	<i>m</i> [MeV]	%
	π^{\pm}	140	85
	κ^{\pm}	490	10
	(_) p	940	5
L			

> analytic:

$$\mathsf{TOF} = \sqrt{\left(rac{m_\pi \ell_{\mathsf{track}}}{
ho}
ight)^2 + \left(rac{\ell_{\mathsf{track}}}{c}
ight)^2}$$

> ConvNet π^{\pm} , K^{\pm} distributions roughly match analytic predictions for π^{\pm} , K^{\pm} in **both** cases assuming $m_{\pi^{\pm}}$

Testing the Hypothesis — Mass Class 2 Assuming all Particles are $p^{(-)}$

type	m [MeV]	%
π^{\pm}	140	85
κ [±]	490	10
() p	940	5

> analytic:

$$\mathsf{TOF} = \sqrt{\left(\frac{m_p \ell_{\mathsf{track}}}{p}\right)^2 + \left(\frac{\ell_{\mathsf{track}}}{c}\right)^2}$$

- > ConvNet prediction for $\stackrel{\frown}{p}$ wide but approximates analytic prediction for $\stackrel{\frown}{p}$, assuming $m_{\underline{p}}$
- > low $\stackrel{(r)}{p}$ abundance \Rightarrow difficult to learn $m_{(r)}_{p}$
- > ConvNet has understood, that ≥ 2 mass classes exist

Summary & Outlook

Summary:

> idea: build a TOF regression network

> predict TOF

 $\downarrow \downarrow$

 \Downarrow

> use TOF + p + ℓ_{track} for particle identification

Outlook:

Regression

Contine

- continue to understand what the networks are doing
- > no hyperparameter optimisation yet
- > prevent internal particle identification
- > skip TOF regression, classify π^{\pm} vs. \mathcal{K}^{\pm} vs. $\stackrel{\hookrightarrow}{p}$ directly

Thank you!

Contact

Deutsches Elektronen-Synchrotron DESY Konrad Helms © 0009-0008-7200-7670 DESY FTX / Georg-August-Universität Göttingen konrad.helms@desy.de

www.desy.de

Backup

A Closer Look at the Benchmark Algorithm

type	<i>m</i> [MeV]	%
π^{\pm}	140	85
K^{\pm}	490	10
(_) p	940	5

Performance Comparison to RANSAC

Testing the Hypothesis #1

Assuming all Particles are π^{\pm}

Testing the Hypothesis #2

Assuming all Particles are K^{\pm}

Testing the Hypothesis #3

Assuming all Particles are $\overset{(-)}{D}$

analytic:

$$\mathsf{TOF} = \sqrt{\left(\frac{m_{\rho}\ell_{\text{track}}}{\rho}\right)^2 + \left(\frac{\ell_{\text{track}}}{c}\right)^2} \quad \boxed{\begin{array}{l}m_{\pi^{\pm}} \simeq 140 \, \text{MeV}\\m_{K^{\pm}} \simeq 490 \, \text{MeV}\\m_{p} \simeq 940 \, \text{MeV}\end{array}}$$

$m_{\bar{p}}$ assumption vs. ConvNet

Reconstructing the Masses - Benchmark Algorithm

type	<i>m</i> [MeV]	%
π^{\pm}	140	85
κ^{\pm}	490	10
(_)	940	5

1. predict TOF

2. use
$$\ell_{ ext{track}}$$
 and p to calculate

$$m_{
m reco.} = rac{p \cdot {
m TOF}_{
m pred.}}{\ell_{
m track}} \sqrt{1 - \left(rac{\ell_{
m track}}{({
m TOF}_{
m pred.} \cdot {
m C})}
ight)^2}$$

Reconstructing the Masses - EPiC Regression

type	<i>m</i> [MeV]	%
π^{\pm}	140	85
κ^{\pm}	490	10
(_) p	940	5
μ	540	

1. predict TOF

2. use
$$\ell_{ ext{track}}$$
 and p to calculate

$$m_{
m reco.} = rac{p \cdot {
m TOF}_{
m pred.}}{\ell_{
m track}} \sqrt{1 - \left(rac{\ell_{
m track}}{({
m TOF}_{
m pred.} \cdot {
m C})}
ight)^2}$$

Reconstructing the Masses - ConvNet

type	<i>m</i> [MeV]	%
π^{\pm}	140	85
κ^{\pm}	490	10
(_)	940	5

1. predict TOF

2. use
$$\ell_{\text{track}}$$
 and p to calculate

$$m_{
m reco.} = rac{p \cdot {
m TOF}_{
m pred.}}{\ell_{
m track}} \sqrt{1 - \left(rac{\ell_{
m track}}{({
m TOF}_{
m pred.} \cdot {
m c})}
ight)^2}$$

Network Input - Boxed, Biased

Problems

