

ML for goodness-of-fit via Neyman—Pearson testing

Marco Letizia – Machine Learning Genoa Center

In collaboration with:

G. Grosso (IAIFI), M. Pierini (CERN), L. Rosasco (MaLGa), A. Wulzer (IFAE), M. Zanetti (UniPd).

Based on: arXiv:2204.02317, arXiv:2303.05413, arXiv:2305.14137.

Code: <u>https://github.com/FalkonHEP</u> (under revision)

Overview

NPLM is a test designed to compare data with a statistical model (GoF):

- Developed for new physics searches at the LHC
- Data-driven
- Signal-agnostic
- Unbinned and multivariate
- No data splitting
- Flexible
- Interpretable

Similarities with two-sample testing: can it be used to evaluate simulators and surrogates?

Goodness-of-fit as a two-sample test

Data

$$\mathcal{D} = \{x_i\}_{i=1}^{N_{\mathcal{D}}}, \qquad x_i \sim p_{\text{true}}(x)$$

Data sample

Theoretical expectation (R)

 $p(x|R), \quad N(R)$

$$p_{\rm true}(x) \neq p(x|R)$$

Goodness-of-fit as a two-sample test

Data

$$\mathcal{D} = \{x_i\}_{i=1}^{N_{\mathcal{D}}}, \qquad x_i \sim p_{\text{true}}(x)$$

Theoretical expectation (R)

$$\mathcal{R} = \{x_i\}_{i=1}^{N_{\mathcal{R}}}, \qquad x_i \sim p(x|R), N(R)$$

 $\mathcal{N}_{\mathcal{R}} \gg \mathcal{N}_{\mathcal{D}}$

$$p_{\rm true}(x) \neq p(x|R)$$

•

Model data as local deformation of reference

$$n(x|\cdot) = N(\cdot)p(x|\cdot)$$

$$n(x|w) = e^{f_w(x)}n(x|R) \quad \Rightarrow \quad f_w(x) = \log \frac{n(x|w)}{n(x|R)} \approx \log \frac{n_{\text{true}}(x)}{n(x|R)}$$

Likelihood:
$$L(\mathcal{D}|\cdot) = \frac{e^{-N(\cdot)}}{N_{\mathcal{D}}!} \prod_{x=1}^{\mathcal{N}_{\mathcal{D}}} n(x|\cdot)$$

Likelihood ratio test:
$$t_w(\mathcal{D}) = -2\left[\frac{N(R)}{N_{\mathcal{R}}}\sum_{x\in\mathcal{R}} \left(e^{f_w(x)} - 1\right) - \sum_{x\in\mathcal{D}} f_w(x)\right]$$

Choose \hat{w} from the data: turn it into a supervised problem

Data:
$$\{(x_i, y_i)\}_{i=1}^{N_D + N_R}, \text{ with } \begin{cases} y_i = 0 \text{ if } x_i \in \mathcal{R} \\ y_i = 1 \text{ if } x_i \in \mathcal{D} \end{cases}$$

Loss
$$\ell(f_w(x), y)$$
: minimum $f_{\widehat{W}} \approx f^* = \log \frac{n(x|1)}{n(x|0)} = \log \frac{n_{\text{true}}(x)}{n(x|R)}$

$$\Rightarrow t_{\widehat{w}}(\mathcal{D}) = -2\left[\frac{N(R)}{N_{\mathcal{R}}}\sum_{x\in\mathcal{R}} \left(e^{f_{\widehat{w}}(x)} - 1\right) - \sum_{x\in\mathcal{D}} f_{\widehat{w}}(x)\right]$$

• Maximum likelihood by minimum loss with neural networks

D'Agnolo et al (2018), <u>arXiv:1806.02350</u>; D'Agnolo et al (2019), <u>arXiv:1912.12155</u>.

• Fast kernel-based logistic regression ML et al (2022), arXiv:2204.02317

Logistic loss:
$$\ell(f(x), y) = (1 - y) \frac{N(R)}{N_{\mathcal{R}}} \log(1 + e^f) + y \log(1 + e^{-f})$$

Kernels:

$$f_w = \sum_{i=1}^n w_i \, k_\sigma(x, x_i) \,, \qquad k_\sigma(x, x_i) = \exp{-\frac{\|x - x_i\|^2}{2\sigma^2}}$$

Falkon library: G. Meanti et al, arXiv:2006.10350

UniGe

Uni**Ge**

Large $t_{\widehat{W}}(\mathcal{D}) \rightarrow \text{disagreement}$ with the reference model.

How large? We need to calibrate.

- Train the model on ${\mathcal R}$ against multiple R-distributed *toys*.

- Permutations: train on random permutations of the dataset.

- Exact.

$$\rightarrow p_{\text{value}} = \int_{t_{\widehat{w}}(\mathcal{D})}^{\infty} dt \, p(t) \,, \qquad Z = \Phi^{-1}(1 - p_{\text{value}})$$

Univariate example

Multivariate

 $pp \rightarrow \mu^+ \mu^-$: SM vs SM+Z'/EFT $[p_{T1}, p_{T2}, \eta_1, \eta_2, \Delta \phi],$ $N(R) = 2 \times 10^4.$ $N_P = 10^5$


```
SUSY (8d), HIGGS (21d)
```

$$N(R) = 10^5$$
, $N_R = 5 \times 10^5$

Table 1Average training times per single run with standard deviations (low level features and reference toys). Note that time measured in hours(for NN) and seconds (for Falkon)

Model	DIMUON	SUSY	HIGGS
FLK	$(44.9 \pm 3.4) { m s}$	(18.2 ±1.2) s	$(\textbf{22.7}\pm\textbf{0.4})\textbf{s}$
NN	(4.23 ± 0.73) h	$(73.1 \pm 10) \mathrm{h}$	(112 ± 9) h

Bold values indicate the lowest for each column (lower is better)

Data: https://zenodo.org/records/4442665

Data Quality Monitoring

Drift tube chambers from Legnaro INFN National Laboratory.

DATASET:

- Drift times (t_i) : the four drift times of the muon track.
- Slope (ϕ): the angle with respect to the vertical axis.
- Reference data is collected in a controlled regime.
- Anomalies:

Uni**Ge**

Uni**Ge**

- reduced voltage of cathodic strips to 75%, 50%, and 25% of their nominal value (-1.2 kV)
- lowered front-end thresholds to 75%, 50%, and 25% of nominal value (100 mV)

Data: https://zenodo.org/records/7128223

$\bar{t}_{tr} pprox 0.5 \ { m sec}$

Outlook

- Ongoing effort to apply NPLM to real analysis (CMS).
- Compare/combine with alternative approaches to AD and GoF.

Challenges:

- Inexact simulations nuisance parameters (worked out for NN).
- Reliance on reference toys.
- Model selection for signal-agnostic approaches.

Opportunities (mostly driven by efficiency):

- Indications that NPLM could be SOTA for two-sample testing.
- Compare MC generators.
- Evaluation of generative models.

Backup

MC test data

$$\mathcal{D} = \{x_i\}_{i=1}^{N_{\mathcal{D}}}, \qquad x_i \sim p_{\text{MC}}(x)$$

Generative model

$$\mathcal{R} = \{x_i\}_{i=1}^{N_{\mathcal{R}}}, \qquad x_i \sim p_{gen}(x)$$

$$p_{\mathsf{MC}}(x) \neq p_{gen}(x)$$

Backup

Falkon has three main hyperparameters (M, σ, λ)

No cross-validation to preserve model-independence.

 \rightarrow mix of heuristics, statistical considerations and efficency

Backup G. Grosso, ML, M. Pierini, A. Wulzer <u>arXiv:2305.14137</u>

Different metrics

