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Learning Broken Symmetries

- Symmetries (e.g. rotational) in
data can be leveraged to
improve learning

- Augment dataset with
transformations[1]

- Build symmetry into network|[2]
(e.g. network only performs
invariant operations) Synthesizing augmented data
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- Symmetries can be broken in

observed data Image Rotated
: Post-Detection
- Typical symmetry methods

become less effective
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- Detector effects can break Rotated Jet
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rotational symmetry in jet images
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- Transformations post-detection

lead to non-physical artifacts




Learning Broken Symmetries

Jet images tend to be sparse

Artifacts disproportionately
dominate information content
in sparse images

Can influence learned
strategy relatively more than
in non-sparse computer vision
tasks

Not sparse -
artifacts
negligible[3]

Sparse -
artifacts
prominent
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Learning Broken Symmetries -

Solutions
- Applying transformations

pre-detection (in sim) avoids
artifacts ﬁ W &
d

- Can additionally explicitly

encourage output invariance
Network output

different across d b C
¥

- Transfer learning for use variants X

with real data (we don’t - /
ncourage

explore this here) Same Value

Rotate jet instead of detected image



Learning Broken Symmetries -
Encouraged Invariance

- Invariance encouraged in
loss function

- Accumulate outputs for
variants of same image

- Penalize for non-zero
standard deviation in set

General form of loss

Pr= (I:Lcls i 3 bLinv

a, b scalar coefficients

f Classification term
Lim, Invariance term
We use BCE for

classification, MSE to
penalize for non-zero
std. dev.



Learning Broken Symmetries

- Toy Data

- Toy dataset generated to have similar
characteristics to jet images

- Draw energy values from uniform dist.

- Background locations distributed uniformly

on disk

- Signal locations are more clustered

- Deposits spread slightly so they may occupy
multiple pixels when binned
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Learning Broken Symmetries - =~ 0]
Toy Data

Uniform Binning
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Pixelate resulting data for basic
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detector response
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Learning Broken
Symmetries - Toy Data

- 8 variants of each event ” r‘ I
il |
| |

are created, rotated at
45° increments > 00

-0.5

-1.0

- 2 versions of these sets

are created: transformed o e e e He sy

re and post detector 45° rotated variants of event from previous
g P slide. Artifacts in post-det. rotations are visually

apparent - images are blurrier 9



Learning Broken Symmetries - Results

- Scan w/ each aug + pix
method over training set
sizes

- Fully Connected Networks
(FCN) + Particle Flow (PFN)

- Pre-det. aug. similar to or
better than post-det. aug.

- Encouraged invariance w/
pre-det. aug. does best

FCN, Uniform Pixels

PFN, Uniform Pixels
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Learning Broken Symmetries -
Results

Pre-det. aug. has clear benefits in

Uniform bins

Non-uniform bins

h f . | K small large small large
the case of a simpler networ Arch. Augm. set set set set
.. ) FCN None 0.585(1) 0.632(1) 0.571(1) 0.615(1)
Encouraging invariance post-det. aug. 0.606(2) 0.687(1)  0.551(1) 0.618(1)
outperforms aug. alone pre-det. aug. 0.635(1) 0.710(1)  0.625(2) 0.682(1
P g
post-det. inv. 0.655(2) 0.709(1)  0.540(3) 0.642(2)
Encouraging invariance pre-det. pre-det. inv. 0.656(1) 0.724(1)  0.672(2) 0.725(1)
: PFN None 0.519(1) 0.735(1) 0.526(1) 0.664(2)
does best, .espeually when post-det. aug. 0.734(1) 0.771(1)  0.617(5) 0.746(1)
symmetry is more obscured pre-det. aug. 0.724(4) 0.770(1)  0.581(5) 0.758(1)
(rectangular pix) post-det. inv. 0.741(1) 0.772(1)  0.677(3) 0.752(1)
pre-det. inv. 0.718(4) 0.776(1)  0.681(5) 0.765(1)

Differences more apparent for
smaller training data
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