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This talk 
❖ Motivation

⨳ Local calibration

⨳ This project

❖Signal feature selection and network designs
⨳ Sample collection

⨳ Signal features useful for calibration

⨳ DNN & BNN networks

❖ Performance evaluations
⨳ Prediction power

⨳ Signa linearity and (local) resolution

❖ Conclusion
⨳ Future plans

❖ Reference
⨳ All plots (and many more) can be found in ATLAS public note ATL-PHYS-PUB-2023-019
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https://inspirehep.net/literature/2685816
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ML-based Local Calibration 
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❖ Local calorimeter response and resolution
⨳ Improved constituent inter-calibration in combined tracking/calorimeter final state reconstruction 

• Better calibrated neutral response in jets – improvement in scale and resolution for all jets, sub-structure variable 
measurements, measurement of full hadronic recoil (non-jet context), measurement of hadronic event shapes …

⨳ Replacement for present-day LCW with ML-based approach as a local calibration for topo-clusters
• LCW: multi-dimensional binned look-up tables → ML: smooth multidimensional calibration functions, no steep steps at bin 

edges, …

• LCW: loss of correlations due to average scale factors in bins → ML: exploitation and preservation of correlations, better 
resolution

❖ Intentional limitations of approach
⨳  Looking for practical application to be applied to collision data

• Extract topo-clusters for training and testing from calorimeter jets in fully simulated events with Run 2 level pile-up

• Use of cluster moments (constructed features) allows recalibrating at derivation level – all needed data is in the AOD

• Quick adaptation to changing collision environments (e.g., pile-up) and reconstruction cuts – newly trained networks can be 
applied at derivation level (data preparation/extraction for physics)

• No need to go back to full (Tier0) reconstruction, no detailed information (calorimeter cells) needed

⨳ Single-step approach 
• No dedicated (learned) classification prior to regression on topo-cluster response
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Signal Source from MC Simulations
❖ Full simulation of detector signals 

in 𝑝𝑝 collision jet production final 
states with LHC Run 2 pile-up

⨳ Jets in central detector region only 

⨳ Need to match generated truth 
particle jet

❖ Topo-cluster extracted from jets 

⨳ 𝐸clus
dep

> 300 MeV

⨳ Randomly selected for independent 
training, validation, and test samples

⨳ No jet-specific information/features 
used (jet context is fully removed)
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Local Hadronic Calibration in ATLAS
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Feature Set Composition
❖ Focus on observables contributing to response

A. Deposited energy represented by signal (in a 
complex way)

B. Detector geometry – signal characteristics of 
calorimeter sub-systems: variations in level of signal 
non-compensation ( Τ𝑒 ℎ > 1), absorption 
power/leakage, energy sharing around inactive 
regions …

C. Shower development – differences between EM and 
HAD showers: starting point, size, spread and 
compactness …

D. Intrinsic shower fluctuations – variations in the 
shower development of (hadronic) showers

E. Signal strength and relevance – signal significance 
measured by signal-over-noise

F. Collision environment – effects of event 
topology/nearby signals (isolation) and pile-up on 
the topo-cluster signal
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Response Dependence on Features
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Measure for tendency of centrality influences  
ML setup → loss function definition 

Cluster timing is affected by (out-of-time) pile-
up → response increased by additional signals 
from nearby past bunch crossing and the 
following one 

past future
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Challenge: Feature Distributions
❖ Example: complex distribution of topo-cluster distance from nominal vertex
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predominantly 𝑒±/𝛾 mixed predominantly hadronic

contribution to deposited energy
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Neural Network Designs: DNN
❖ Highly tuned configuration 
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Loss function trains the mode: 
                                          1st pass: ℎ = 0.1, 𝛼 = 0.05
                                          2nd pass (seeded with 1st pass model):  𝛼 = 0
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Neural Network Designs: BNN
❖ First attempt*
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*with many thanks to Tilman Plehn & Michel Luchmann for providing the code and lots of advice

Negative log-likelihood loss function with   
                                                                                               regularization by (reverse) Kullback-Leibler (KL)                                                         

                                                                               divergence 𝐷KL models ℛclus
EM  distribution
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↪ uncertainties (1) for model and (2) from training statistics → under further investigation
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Prediction Power
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Prediction Power
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DNN DNN DNN

BNN BNN BNN

DNN learns well 
from feature!

BNN needs more 
fine tuning

DNN learns 
from feature!

BNN needs more 
fine tuning

deposited energy
not a direct target!

deposited energy
not a direct target!
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Signal Linearity & Resolution
❖ Linearity

⨳ Λclus med = Τ𝐸clus
reco 𝐸clus

dep

med

⨳ 𝐸clus
reco ∈ 𝐸clus

EM , 𝐸clus
LCW, 𝐸clus

DNN, 𝐸clus
BNN

❖ Resolution

⨳ 𝜎rel = ൗIQRclus
Λclus (2 ∙ Λclus med)

❖ Findings
⨳ Improved linearity as a function of 

features for DNN and BNN

⨳ Present day LCW calibration 
agnostic to some features (not 
𝐸clus

EM !)

⨳ Local energy resolution 
significantly improved

⨳ Pile-up effects on resolution 
generally reduced – slight 
improvement in slope as well 
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Maybe there is more?
❖ Out-of-time pile-up mitigation

⨳ DNN/BNN learn time dependence of response very 
well – significantly improved signal linearity

⨳ Yields “built-in” correction for pile-up 

⨳ Can provide basis for classification as well (?)

❖ Other expectations for performance 
improvements

⨳ Tests in full jet context still outstanding – what 

happens to pure (𝐸clus
dep

= 0) and pile-up dominated 

topo-clusters (𝐸clus
dep

< 300 MeV)

⨳ Local resolution improvement promising for 
(softer) hadronic recoil reconstructions

❖ Exploration of BNN
⨳ Understanding of uncertainty predictions – 

contribution to “bottoms-up” systematics

⨳ Now an ATLAS project with help from theorists
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Very promising first results for 
(specific) topo-clusters found in 
realistic 𝑝𝑝 collision environment!
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Backup & Extra Slides
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Moving on to the Experiment…
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Total weight   :  7000 t
Overall length:  46 m
Overall diameter:  23 m
Magnetic field:  2T solenoid 
+ (varying) toroid field
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Detector Component of Interest
❖ ATLAS calorimeter system (similar for CMS)
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GEANT4 Simulation: 10 GeV 𝑒− in copper 

Interplay of bremsstrahlung 
& 𝑒+𝑒− pair production up to 
shower maximum → 
ionizations (𝑒±), Compton 
scattering (𝛾), photo-effect 
(𝛾)

rare photo-nuclear reaction in EM shower
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GEANT4 Simulation: 10 GeV 𝜋+ in copper 

kin(only tracks with 2 MeV are shown)E
z (mm)

two inelastic hadronic interactions 
about 260 mm apart 
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GEANT4 Simulation: 10 GeV 𝜋+ in copper 

kin(only tracks with 2 MeV are shown)E
z (mm)
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ATLAS Calorimeter Features
❖ Hardware

⨳ Highly granular in central region 𝑦 < 2.5, sufficient granularity beyond

⨳ Non-compensating, hadrons generate less signal than electrons/photons depositing the same energy

❖ Signal extraction
⨳ Form three-dimensional clusters of topologically connected cell signals by following signal significance (signal-

over-noise) patterns – energy blobs/topo-cluster

⨳ Algorithm features nearest-neighbor growing from a seed – collects neighbors of neighbors if signal significance 
of neighbor is sufficiently high

⨳ Applies splitting between local maxima after initial formation

⨳ Typically reconstructs EM shower into one topo-cluster – hadronic showers can produce > 1 topo-clusters

❖Signal calibration
⨳ Standard LCW algorithm mitigates the non-compensation and corrects for local energy losses introduced by te 

clustering and losses in inactive material around the topo-cluster

⨳ LCW uses topo-cluster features representing the signal, the direction, the location and the shape
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Geometric Topo-cluster Features
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Examples of MC Modeling 

Inclusive spectrum of 𝜆clus

(topo-clusters in jets)
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Pile-up dependence  of 𝔪lat
2

(topo-cluster in jets)

Dependence of 𝜆clus  on 
𝐸clus

EM

(topo-clusters in jets)
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MC Modeling Problems 
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log(𝜆clus) distribution of 
inclusive topo-cluster sample 
(no jet environment required) 

(pile-up insufficiently modeled 
by MC generator & detector 

simulation)

log(𝜆clus) distribution of 
inclusive topo-cluster sample 
(no jet environment required) 

(pile-up from data overlaid on 
hard scatter MC simulation)
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Recent Considerations: BNN
❖ Bayesian networks

⨳ Principles

• Sample of networks emulated 
by sampling weights from 
trained (Gaussian with mean 

ҧ𝐴(𝑤) and width 𝜎stoch(𝑤)) 
weight distributions 𝑞𝜃(𝑤) 
instead of training fixed 
weights 𝑤

• Contributes uncertainties 
due to sampling (𝜎stoch(𝑤)) 
from each network and due to 
training multiple networks 
simultaneously (𝜎pred(𝑤)) ⇒ 

calibration model 
uncertainties
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M. Luchmann (talk, August 25, 2022)

Inputs from, and discussions with, P.A. Delsart & Ana Peixoto (both LPSC Grenoble), Chris Delitzsch (University of Dortmund) 
and a lot of advice, technical (implementation) help and code from T. Plehn & M. Luchmann (both University of Heidelberg)

https://indico.cern.ch/event/1193409/sessions/455695/attachments/2497440/4289388/presentation_ml.pdf
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M. Luchmann (talk, August 25, 2022)

Inputs from, and discussions with, P.A. Delsart & Ana Peixoto (both LPSC Grenoble), Chris Delitzsch (University of Dortmund) 
and a lot of advice, technical (implementation) help and code from T. Plehn & M. Luchmann (both University of Heidelberg)
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