

A Convolutional Neural Network for a topological fast selection algorithm of $HH \rightarrow$ bbbb in FPGAs for the HL-LHC upgrade of the CMS experiment

Maciej Głowacki on behalf of the CMS experiment

7th November 2023

Motivations

CMS Experiment at the LHC, CERN

Data recorded: 2010-Nov-14 18 37 44 420271 GMT(19 37 44 CEST) Run / Event: 151076 1405388

Phase 2 Level 1 Trigger

Deploy ML algorithms already at Level 1

Phase 2 Level 1 Trigger

- L1 Phase II Highlights
 - \circ Larger L1 trigger rate / detector readout rate (100 kHz \rightarrow 750 kHz).
 - Larger L1 trigger latency (3.8 us \rightarrow 12.5 us) \rightarrow more sophisticated algo.
 - $\circ \quad \text{More info at L1 trigger} \rightarrow \text{L1 tracks, higher granularity.}$
 - Allows for Particle Flow (PF) event reconstruction and PUPPI Pile-Up mitigation.
- Topology targeting trigger already tested in L1 Global Trigger
 - Phase 2 Level-1 Trigger upgrade <u>TDR</u>(4.3.6) showed feasibility of topological Machine Learning triggers, targeting VBF Higgs Boson production with invisible plus dijet final states.
 - Classification performed with reconstructed jet and event-level features is currently being tested during Run 3.
- **This talk** shows the feasibility of topology classification performed on PUPPI candidates in Correlator Level 2 (CTL2).
 - I.e. **not** jet clustering but event-level classification.
- Transition from heuristic, rules based code, written in the classical stack, to Neural Networks ("Software 2.0").

$HH \rightarrow 4b$

 $\mathcal{L}_{scalar} = D_{\mu} \phi^{\dagger} D^{\mu} \phi - V(\phi^{\dagger} \phi)$ with $\phi = (\varphi^{+} \varphi^{0})^{T}$ doublet under SU(2)B $V(\phi^{\dagger}\phi) = -\mu^2(\phi^{\dagger}\phi) + \lambda(\phi^{\dagger}\phi)^2$ $\sigma(pp \to HH) \simeq \frac{\sigma(pp \to H)}{1000}$ $\phi(x) = \frac{1}{\sqrt{2}} \exp\left(i\sigma^i\xi(x)\right) \begin{pmatrix} 0\\ v+h(x) \end{pmatrix} \xrightarrow{EWSB} \phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v+h(x) \end{pmatrix}$ Re $Im(\phi)$ If SM is correct : \rightarrow 4000 HH events during Run-2 Non-zero vacuum expectation value $v = \mu^2 / \lambda$... not enough to see HH Mass of the weak bosons 33.6% bb BR HH \rightarrow xxyy Mass of the fermions through (m_H = 125 GeV) $\mathcal{L}_{scalar} = D_{\mu}\phi^{\dagger}D^{\mu}\phi + \mu^{2}(\phi^{\dagger}\phi) - \lambda(\phi^{\dagger}\phi)^{2}$ ww 24.8% Yukawa couplings $= \frac{v^2}{8} \left(g^2 W^i_{\mu} W^{i\mu} + g'^2 B_{\mu} B_{\nu} - 2g' g B_{\mu} W^{3\mu} \right) \left(1 + \frac{h}{v} \right)^2$ gg Fully parameterized by λ $+\frac{1}{2}\left(\partial_{\mu}h\partial^{\mu}h\right)-\lambda v^{2}h^{2}-\lambda vh^{3}-\frac{\lambda}{4}h^{4}-\frac{\lambda v^{4}}{4}$ 7.3% ττ Theory value given by v and m,, **Experimental measurement** ΖZ kinetic term trilinear quartic mass \rightarrow Test of the SM coupling coupling term \rightarrow Probe the shape of the 0.26% 0.1% γγ potential $m_H = \sqrt{2\lambda}v$ rarer ww qq (on our menu today) → Very sensitive to BSM bb ττ ZZ

rarer

ŶΥ

10-1

10-2

10-3

10-4

10⁻⁵

CNN based topological trigger

Dataflow

1. Calorimeter and track information used in PF reconstruction and PUPPI pile-up mitigation. 2. PUPPI candidate P_T binned in the η - ϕ space of the detector to produce 2-D *images* used concurrently by topological classifier and Jet Finding Algorithm [1]. Preprocessing is applied to refine images to serve as input classifier.

3. Convolutional Neural Network (CNN) executes its inference procedure from input images. 4. CNN probability score delivered to GT to be used

alongside existing menu

bits.

Architecture

Explainability

- Make physics transparent.
- Condition model on/regress L1T reconstructed quantities.
- Guide model architecture by physics,
 - improve understanding of feature extraction layers.

r	<u>, </u>
Physics	Physics
1 1195105	T Trysics
i la	
i l	
1	
1	i i i i
ML model	ML model
	'

GradCam

- Pixel-wise Importance scores computed from backpropagated gradients of class scores w.r.t. final feature map activations.
- Gradients are then averaged, producing a weight for each feature map point that represents its importance in the classification decision.
- Visualises areas of high importance in the input on the final classification.

Physics Performance

- Grad-CAM scores indicate model is learning to cluster PUPPI candidates into jets.
 - Good agreement seen between highest Grad-CAM intensity and leading Level 1 reconstructed jet.
- 65% efficiency at 10kHz total rate achieved (rate equivalent to existing QuadJetHT L1T path).

Machine Learning on the edge

Resource & Latency usage

- Im2col [4] algorithm used to increase parallelism on each clock cycle
 - Meets initiation and latency requirement of the CTL2 subsystem.

evice		Part	xcvu9p-flga2577- 2-e
et De	Т	arget clock	2.78 ns
Targ	Pa Re	rallelisation / euse Factor	18/1
d)		SLR usage	Device usage
Jsage	LUT 10.6%		3.5%
Irce L	FF	7.0%	2.3%
esou	DSP 10.5%		3.5%
œ	BRAM	<0.1%	<0.1%
tency	Clo	ck frequency	360 MHz
		Latency	269 ns
	Initi	ation Interval	117 ns

			_		
707₁	AIYIA	×2Y1	PLAEX	X4Y14	GLR2
ειγοχ	ELVIX	X2Y18	SIVEX	X4Y13	ELVEX
X0Y12	21712	X2Y12	21,42 X	X4Y12	X 5712
τιγοχ	IIAIX	172X	11.42 X	X4Y11	11.45.X
τγοχ	0TXIX	X2Y10	OT SEX	X4Y10	01.45 X
67 0 X	671X	Х2Ү9	X3Y9	X4Y9	ST SYS SYS
хоүв	X1Y8	Х2Ү8	X3Y8	Х4Ү8	Х5Ү8
X0Y7	ΧIX	X2Y7	X3Y7	X4Y7	X5Y7
хоүб	X176	Х2Ү6	ХЗҮБ	Х4Ү6	X5Y6
270X	XIYS	Х2Ү5	ХЗҮБ	Х4Ү5	X5Y5
X0Y4		- AL		X474	X5 Y ^t so
хоүз		1. 		X473	Х5Ү3
X0Y2	X1Y2		Lie	X4Y2	X5Y2
τγοχ	IYIX	X2Y1	X3Y1	X4Y1	X5Y1
хоүо	X1Y0	Х2Ү0	X3Y0	Х4Ү0	X5Y0

Summary

- Conditions for the CMS L1T during Phase 2:
 - 200 Pile-Up interactions.
 - Reduced latency constraints.
- Addition of tracking information at L1:
 - Full Particle Flow reconstruction.
 - PUPPI Pile-Up mitigation.
- Machine Learning approaches viable:
 - CNN-based topological trigger performs well (efficiency vs rate).
 - Meets latency constraints while maintaining small FPGA footprint.
- Future iterations:
 - Improved model training pipeline with hard negative mining.
 - Location-dependent kernel weights (mirror detector structure with different learnable weights for barrel, endcap, forward regions).
 - \circ ~ Test interface with HLT.

[1] "The Phase-2 Upgrade of the CMS Level-1 Trigger", CERN-LHCC-2020-004 ; CMS-TDR-021

[2] "Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization", <u>10.1007/s11263-019-01228-7</u>

[3] "Fast inference of deep neural networks in FPGAs for particle physics", <u>10.1088/1748-0221/13/07/p07027</u>, <u>https://github.com/fastmachinelearning/hls4ml</u>

[4] "Fast convolutional neural networks on FPGAs with hls4ml", <u>10.1088/2632-2153/ac0ea1</u>

Phase II trigger menus

- Quad jet and HT requirements (reconstructed jets and summed)
- ~50-60% efficiency at ~10 kHz rate

	Offline	Online	Rate*	Additional	Objects
L1 Trigger seeds	Threshold(s)	Threshold(s)	$\langle PU \rangle = 200$	Requirement(s)	plateau
	at 90% or 95% (50%)	(Barrel)			efficiency
	[GeV]	[kHz]	[kHz]	[cm, GeV]	[%]
Single/Double/Triple Lepton	(electron, muon) seeds				
Single TkMuon	22	20	12	$ \eta < 2.4$	95
Double TkMuon	15,7	13,6	1	$ \eta < 2.4, \Delta z < 1$	95
Triple TkMuon	5,3,3	4,2,2	16	$ \eta < 2.4, \Delta z < 1$	95
Single TkElectron	36	32	24	$ \eta < 2.4$	93
Single TkIsoElectron	28	25	28	$ \eta < 2.4$	93
TkIsoElectron-StaEG	22, 12	19,8	36	$ \eta < 2.4$	93, 99
Double TkElectron	25, 12	22,10	4	$ \eta < 2.4, \Delta z < 1$	93
Single StaEG	51	46	25	$ \eta < 2.4$	99
Double StaEG	37,24	32,20	5	$ \eta < 2.4$	99
Photon seeds					
Single TkIsoPhoton	36	33	43	43 $ \eta < 2.4$	
Double TkIsoPhoton	22, 12	19,9	50	$ \eta < 2.4$	97
Taus seeds					
Single CaloTau	150(119)	109	21	$ \eta < 2.1$	99
Double CaloTau	90,90(69,69)	65,65	25	$ \eta < 2.1, \Delta R > 0.5$	99
Double PuppiTau	52,52(36,36)	36,36	7	$ \eta < 2.1, \Delta R > 0.5$	90
Hadronic seeds (jets, H_T)					
Single PuppiJet	180	121	70	$ \eta < 2.4$	100
Double PuppiJet	112,112	72,72	71	$\eta < 2.4, \Delta \eta < 1.6$	100
$PuppiH_T$	450(377)	363	11	jets: $ \eta < 2.4, p_T > 30$	100
$QuadPuppiJets-PuppiH_T$	70,55,40,40,400(328)	41,30,19,19,316	9	jets: $ \eta < 2.4, p_T > 30$	100,100
				safety online cut $p_T > 25$ for jets	

Path	ſ	Inclusive acceptance	Loosely presel. evts. acceptance	YR presel. evts. acceptance
QuadJet_70_55_40_40	Γ	59%	85%	99%
QuadJet_70_55_40_40_HT320	Г	50%	76%	91%
QuadJet_40_40_40_40_MuJet40	Г	23%	36%	44%
QuadJet_40_40_40_40_MuJet40_HT250	Г	22%	35%	43%
QuadJet_70_55_40_40_HT320 OR QuadJet_40_40_40_40_MuJet40_HT250	ļ	52%	79%	94%

Datasets (DAS)

MinBias:

/MinBias_TuneCP5_14TeV-pythia8/Phase2HLTTDRWinter20DIGI-PU200_110X_mcRun4_realistic_v3-v3/GEN-SIM-DIGI-RAW

 $HH \rightarrow bbbb$:

/GluGluToHHTo4B_node_SM_TuneCP5_14TeV-madgraph_pythia8/Phase2HLTTDRWinter20DIGI-PU200_110X_mcRun4_reali stic_v3-v5/GEN-SIM-DIGI-RAW