

Reconstructing and Calibrating Hadronic Objects with ML Algorithms in ATLAS

ML4Jets 2023

Tobias Fitschen on behalf of the ATLAS Collaboration

06 November 2023

University of Manchester

European Research Council Established by the European Commission

Overview / Publications

Calorimeter Clusters

07/2020:
^{III} ML for Pion Identificaton and Energy Calibration 08/2022:
^{IIII} Point Cloud DL Methods for Pion Reconstruction 08/2023:
^{IIIII} Cluster Calibration with ML Techniques

 \rightarrow Peter Lochs' $rac{d}{d}$ talk (tomorrow)

Missing E_T

R=0.4 Jet Calibration

R=1.0 Jet Calibration

New @ ML4Jets: $\ensuremath{ \ensuremath{ \ensuremath{$

π^{0} vs π^{\pm} Shower Classification

First step in cluster calibration: Differentiate EM from hadronic clusters Non-compensating ATLAS calorimeter requires different calibrations for neutral/charged clusters

0.00

-0.10

Baseline cluster calibration $\mathcal{P}_{\text{clus}}^{\text{EM}}$

• Relies on binned EM-scale

cluster variables

- Total cluster energy $E_{\text{cluster}}^{\text{EM}}$
- Pseudorapidity η
- ${\scriptstyle {\scriptstyle {\footnotesize C}}}$ Longitudinal depth $\lambda_{\sf clus}$
- 🖙 1st cell energy moment $\langle \rho_{\rm cell}
 angle$
- Combined into likelihood $\mathcal{P}_{\mathsf{clus}}^{\mathsf{EM}}$

Individual calorimeter cell signals

- \rightarrow As point clouds (GNN, PFN)
- \rightarrow Or projected on images (CNN)

Observations

- All point cloud methods significantly outperform baseline $\mathcal{P}_{clus}^{\text{EM}} \quad ^{1/12}$

Energy Regression

Second step: Energy Calibration Observations

- GNN performs best wrt. response and width
- Followed by Deep Sets
- New: Bayesian NN (BNN)
 - \rightarrow New results on this in

♂ Peter Lochs' talk

Cluster Energy Resolution

DNN / BNN

Overview / Publications

Calorimeter Clusters

07/2020: ☑ ML for Pion Identificaton and Energy Calibration 08/2022: ☑ Point Cloud DL Methods for Pion Reconstruction 08/2023: ☑ Cluster Calibration with ML Techniques

 \rightarrow Peter Lochs' $rac{D}{}$ talk (tomorrow)

Missing E_T

07/2021: ${}^{_{\mbox{\scriptsize C}}}$ METNet: Combined ${\not\!\!{E}}_T$ Working Point with ML

R=0.4 Jet Calibration

R=1.0 Jet Calibration

New @ ML4Jets: @ Simultaneous large-R JES+JMS with ML

ightarrow Main part of this talk

MetNet

METNet: A combined *p*_T^{miss} working point (*C* ATL-PHYS-PUB-2021-025):

- Plus soft term: Tracks from PV not associate to hard objects
- Different working points (WPs) defined for various pileup conditions
 - E.g. "tight": Higher p_T cuts on forward jets
- - Based on event kinematics and conditions

$p_{\rm T}$ [GeV] for jets with:				fJVT for jets with	1-0
Working point	$ \eta < 2.4$	$2.4 < \eta < 4.5$	JVT for jets with $ \eta < 2.4$	$2.5 < \eta < 4.5$ and $p_{\rm T} < 120$ GeV	000
Loose	> 20	> 20	> 0.5 for $p_{\rm T} < 60$ GeV jets	-	ġ
Tight	> 20	> 30	> 0.5 for $p_{\rm T} < 60$ GeV jets	< 0.4	П.
Tighter	> 20	> 35	> 0.5 for $p_{\rm T} < 60$ GeV jets	-	×
Tenacious	> 20	> 35	> 0.91 for 20 $< p_{\rm T} < 40$ GeV jets	< 0.5	9
			> 0.59 for 40 $< p_{\rm T} < 60$ GeV jets		F
			> 0.11 for 60 $< p_{\rm T} < 120$ GeV jets		<u>م</u>

Working Points

MetNet

Trained among others on $t\bar{t}$

Across different pileup regimes

Extrapolates well to $WW \rightarrow \ell \nu \ell \nu$

C ATL-PHYS-PUB-2021-025

MetNet

- *E*_T definition depends on process but MetNet performs best for all
- Significantly better RMS than any WP alone

4/12

MetNet

Trained among others on $t\bar{t}$

 $ZZ \rightarrow \nu \nu \ell \ell$

Extrapolates well to $WW ightarrow \ell u \ell u$

MetNet

- $\not{\!\! E}_T$ definition depends on process but MetNet performs best for all
- Significantly better RMS than any WP alone
- MET Scale generally good but skewed towards 0 for low $\not{\!\! E_T}^{4/12}$

Overview / Publications

Calorimeter Clusters

07/2020: ☑ ML for Pion Identificaton and Energy Calibration 08/2022: ☑ Point Cloud DL Methods for Pion Reconstruction 08/2023: ☑ Cluster Calibration with ML Techniques

 \rightarrow Peter Lochs' $rac{D}{}$ talk (tomorrow)

Missing E_T

07/2021: ${\ensuremath{ \ensuremath{ \ensuremat{\ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \ensur$

R=0.4 Jet Calibration

, ,

R=1.0 Jet Calibration

New @ ML4Jets: @ Simultaneous large-R JES+JMS with ML

ightarrow Main part of this talk

ATLAS R=0.4 Jet Calibration Sequence

Global Sequential Calibration

- After energy scale calibrated on average, GSC corrects for small differences
- E.g. for different jet flavours
- Sequentially corrects for each variable

Jet Calibration: GNNC

Global NN Calibration (GNNC)

- GSC Does not exploit correlations of variables
- New method (GNNC) uses MLP trained to predict p_T response
- \rightarrow Improvement over full p_{T} range

Overview / Publications

Calorimeter Clusters

07/2020: ☑ ML for Pion Identificaton and Energy Calibration 08/2022: ☑ Point Cloud DL Methods for Pion Reconstruction 08/2023: ☑ Cluster Calibration with ML Techniques

ightarrow Peter Lochs' arepsilon talk (tomorrow)

Missing E_T

R=0.4 Jet Calibration

, p

R-1.0 Jet Calibration

New @ ML4Jets: C Simultaneous large-R JES+JMS with ML

ightarrow Main part of this talk

ATLAS R=1.0 Jet Calibration

ATLAS R=1.0 Jet Calibration Sequence

New @ ML4Jets: ML variant of **full** MC-based R=1.0 jet calibration

Simultaneous Calibration of Jet Energy and Mass using ML

Method:

Predict responses

$$R_E = rac{E_{
m reco}}{E_{
m true}}$$
, $R_M = rac{M_{
m reco}}{M_{
m true}}$

- Modeled by Gaussians $y_{\text{pred}} = (\mu^E, \sigma^E, \mu^m, \sigma^m)_{\text{pred}}$
- \Rightarrow Calibration Factors:

Training

Steps	\mathbb{N}^{*}	Number of epochs	Batch size	Loss
	1	2	15000	MDNA
Initialisation	2	2	25000	MDNA
	3	2	35000	MDNA truncated (4.0 or)
	4	2	15000	MDNA truncated (3.5 \sigma)
	5	6	95000	MDNA truncated (3.5 or)
	6	6	95000	MDNA truncated (3.5 \sigma)
Common training	7	6	125000	MDNA truncated (3.2 \sigma)
	8	6	125000	MDNA truncated (3.2 \sigma)
	9	10	155000	MDNA truncated (3.0σ)
	10	15	95000	MDNA truncated ($E: 3.0\sigma, m: 2.0\sigma$)
Exclusive mass training	11	50	95000	MDN truncated (1.0 \sigma)

Training Strategy

- Multi-stage training process
 - First E & M simultaneous
 - Then only M
- Alternative losses used in some training stages
 - To accommodate for asymmetric response:

Asymmetric MDN:

$$P_{\text{MDNA}}(x) = \begin{cases} 1e^{(x-\mu)^2/2\sigma_1} & \text{if } x < \mu\\ 1e^{(x-\mu)^2/2\sigma_2} & \text{if } x \geq \mu \end{cases}$$

Truncated MDN:

$$P_{ ext{trunc}}(x) = egin{cases} 1 ext{e}^{(x-\mu)^2/2\sigma} & ext{if} |x < \mu| < N\sigma \ 0 & ext{otherwise} \end{cases}$$

Eta Annotation

Complex dependence on η

- With sharp changes from bin-to-bin due to detector geometry/instrumentation
- Difficult for DNN to adapt to this
- Annotation strategy
 - $\rightarrow~{\rm Add}$ 12 features that are functions of η
 - \rightarrow Encoding distance to different η regions

10/12

Response: E

Improvement across the board

• DNN: better closure than standard calib. in response for E

Response: M

Improvement across the board

• DNN: better closure than standard calib. in response for E and M

Response: M

Improvement across the board

- DNN: better closure than standard calib. in response for E and M
- M response stable even in low and high $p_{\rm T}$ regime

Improvement across the board

- DNN: better closure than standard calib. in response for E and M
- M response stable even in low and high $p_{\rm T}$ regime
- Resolution drastically improved

Resolution: M

Pileup Stability: E

Improvement across the board

• More stable with respect to pileup

Pileup Stability: M

Pileup Stability: E

Improvement across the board

- More stable with respect to pileup
- Outperforms standard calibration in many more aspects
 - Modelling: Less dependent on MC generator
 - More stable across different η regions and processes (H, W/Z, top)
 - More consistent across different flavours (q/g)
 - See publication for dedicated studies on these aspects

Pileup Stability: M

Summary

Summary

Many ML applications for hadronic objects in ATLAS

- Calorimeter cluster classification and energy regression
 - → See Peter Loch's ♂talk
- \mathcal{F}_{T} calibration (MetNet)
- Jet energy scale calibration
 - R=0.4 jets: ML based GSC step (GNNC)
 - $\bullet~R{=}1.0$ jets: Full MC-based calibration (E and M) by single DNN

ML based methods perform best in all domains

• Important: Better response & resolution in MC are great, but data/MC agreement & model independence should not be neglected!

Appendix

for new ML-based JES+JMS calibration

♂ Ref. available soon

Samples & Features

Usage	Process type	Generator	Number of jets passing the selections (in millions)	no
training, validation	QCD dijet	Рутніа 8.230	~ 270	° S
validation	W/Z	Рутніа 8.230	~ 20	able
validation	top	Рутніа 8.230	~ 15	Vail
validation	Higgs	Рутніа 8.230	~ 15	ία.
validation	QCD dijet	Sherpa 2.2.5	~ 30	Ref
Table 1: Simulated samples used for training and validation				

	Name	Definition			
Jet level	LogE LogM η	$\log(E_{ject})$ with E_{ject} (energy) in GeV $\log(m_{ject})$ with m_{ject} (mass) in GeV let pseudo-appidity	-		
Substructure level	groomMRatio Width Split12,Split23 C2, D2 τ_{21}, τ_{32} Qw	Mass ratio between groomed and ungroomed jets $\sum_i p_T (AM(i, jet)) (\sum_i p_T)$ where AR is the angular distance (sum over the jet constituents) Splitting scales at the 1 stand 2 and exclusive k_T declusterings [35] Energy correlation ratios [36, 37] N-Subjettiness ratios using WTA axis [38, 39] Smallest invariant mass among the proto-jets pairs of the last 3 steps of a k_T reclustering sequence			
Detector level	EMFrac EM3Frac Tile0Frac EffNConsts NeutralFrac ChargedPTFrac ChargedMFrac	Energy fraction deposited in the electromagnetic calorimeter Energy fraction deposited in the bird layer of the electromagnetic calorimeter Energy fraction deposited in the 1st layer of the hadronic calorimeter $(\zeta_1, E_1)^2 / (\zeta_2, E_2^2)$ (sum over the jet constituents) Energy fraction from neutral constituents p_T fraction from charged constituents Mass fraction from charged constituents	vailable soon		
Event level	μ NPV	Mean number of interactions per bunch crossing Number of primary vertices per event	Ref. av		
Table 2: The input features of the DNN.					