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Tracking with Transformers
and U-net Models
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Introduction
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Tracking by meticulously following visible
tracks [2]

Big European bubble chamber
at CERN (operation in 1970s) [1]
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[1] Arpad, Horvath. "Big European Bubble Chamber" 2005. Wikimedia.org. Wikimedia Commons. Web. 4 November 2023.
[2] Ahmed, Syed Naeem. Physics and engineering of radiation detection. Academic Press, 2007.



Introduction

® \With modern layered detector design and electronic readout systems the
situation looks rather different

[3]

® However, constructing tracks by hand has for a while been completely unfeasible,
and so computational techniques such as the Kalman filter have been adopted

® But with upcoming HL-LHC even traditional computational techniques such as the

Kalman filter may prove too inefficient & '

= 2

3 [3] Amrouche, Sabrina, et al. "The tracking machine learning challenge: throughput phase." Computing and Software for Big Science 7.1 (2023): 1.
[4] Vlimant, J.-R., Innocente, V., Salzburger, A., & Guyon, I. (n.d.). TrackML: a Tracking Machine Learning Challenge [Slide show]. ACAT 2019, Saas-fee.



Introduction

A Level 1 Level 2 Level 3

® This is a very active field of research with multiple directions 3|
of development gl o o e
® TrackML challenge [5] g ; Y ]
® Graph Neural Networks (GNN) 2 -
< @ Alg.1
v Alg.2
B Alg.3
® Our goal is to construct a systematic way of finding an | | o Alg.4
optimal algorithm for the task at hand Simulation complexity
® Increase efficiercy .
® Reduce designer bias L L I |
{| Arch.A || Arch.B |i i * E
| | = oo e 2 o
® The requirements for this are two-fold| _simuation set L 2esion 2 J| Peson 2 it ¢ | I
® Synthetic detector data with increasing {— — ! |
i[| Design n f]| Design n | POV 1y

complexity levels
® Multiple ML(-assisted) strategies for
tracking
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[5] Calafiura, Polo, et al. "Trackml: a high energy physics particle tracking challenge." 2018 IEEE 14th International Conference on e-Science
(e-Science). IEEE, 2018.
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Data generation
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® For the purpose of data generation at various levels of
complexity a lightweight simulator for HEP collision data was

developed: REDuced Virtual Detector (REDVID) [6]

||||||||
Hi IR WA

® Trades in physics accuracy for increased configurability and
modaularity
® Physics-accurate simulators do already exist (FATRAS, Geant)
® High configurability is necessary for the first complexity
layers in the aforementioned systematic algorithm search

exity achievable with this dataset at the
ude
linear tracks

® Layers of comp
current state inc
® Parametriseo

® Parametrised helical tracks
® Noise levels

® Origin smearing

[6] U. Odyurt and S.N. Swatman and A.L. Varbanescu and S. Caron, "Reduced Simulations for High-Energy Physics, a Middle Ground for Data-
Driven Physics Research," 2023, DOI: 10.48550/arXiv.2309.03780.
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A Configurable model, |

Event simulator behaviour complexity

Barrel
sub-detector

Long-strip
sub-detector

v

l% Short-strip
/1 sub-detector
Floy oy oy 2y 2y

Realistic model,
complex behaviour

complex behaviour !
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Configurable md:del,
reduced behavipu

® REDVID 3D

. @ REDVID2D | | Realistic model,
’ . | reduced behaviour

Virtual detector model complexity
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Transformers T

L 1.0
- 0.8

u Hi ChatGPT, could you convert for me the following matrix of hits in three dimensions (n_hits, :
- 0.6

3) to tracks?
~ 0.4
~ 0.2

- 0.0

0.8

Certainly! Here are the hits that are part of one track based on the calculated z-coordinates:

® Asking ChatGPT is not the way...
® We have to do something more sophisticated

Output
Probabilities

The encoder model takes
some input and encodes ™™

Linear

it into some latent space o | Advantages
——F— ‘ m’ﬁ’« ¢ ® Parallelizable training
Feed e fe O(n? complexity, developments for
Forward 7 7 Nx , I
The decoder model takes as - mmm AG & Norm . efficient transformers .
input the output of the M Hoad Mt-oas ' ® Good at capturing complex nonlinear §
encoder and some input =) = dynamics
oang 9 gl oD forone em—
sequence, and outputs the next ™" yar- S
item in the sequence = o 6]
R Inputs Outputs

(shifted right)

[7] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Transformers - Trackformer

® This model resembles closely the original transformer architecture [7]

® Translating, e.g. English to Spanish, is a typical task for
transformer models
® This model in similar fashion translates hits to tracks

® Encoder: Encodes full event hits
® No positional embedding as hits have no particular
order
® Fixed-query attention [8] to achieve full positional
invariance of inputs

® Decoder: Predicts next hit in track
® Autoregressively builds the full track, starting from
a given seed

[7] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).
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[8] Lee, Juho, et al. "Set transformer: A framework for attention-based permutation-invariant neural networks." International conference on

machine learning. PMLR, 2019.
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Transformers - Trackformer

® Model achieves 92% accuracy on REDVID data with 1-20 (17 average, 2.8 standard
deviation) straight tracks with noise per event

hits hits hits
e truetrack e true track e true track
—— reco track —— reco track —— reco track

0 _ 0 -
2 4 2 4 4 4

® Model achieves 85% accuracy on REDVID data with 10-50 (42 average, 6.7 standard
deviation) curved tracks with noise per event . .. s

e truetrack e truetrack e truetrack
— reco track — reco track — reco track
(




Transformers - Encoder-only Classifier

® This architecture only uses an only an encoder as a classifier (sequence to sequence)
® Not autoregressive, advantage being one-shot classification of full hits in event
® Classification bins defined in track parameter dimensions, e.g. radius, pitch, ...

O O O
oo O O\ e O
| O |
O ® - o = O A G o o
o O O O o

® Model achieves 88% accuracy on REDVID data with 10-50 (42 average, 6.7 standard
deviation) curved tracks with noise per event

. . . ; ': ; e ."‘ k:"‘g:;‘:: F’lu \_‘; :
: Correctly classified hits &Qg’
Red: Incorrectly classified hits N
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Transformers - Encoder-only Regressor

® This architecture only uses an only an encoder as a regressor (sequence to sequence)
® Regresses track parameters, followed by agglomerative clustering
® Also a one-shot approach, although extra clustering step is required
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O — track param 2 —»
® Model achieves 87% accuracy on REDVID data /™ ¢ ¢ = = =
with 10-50 (42 average, 6.7 standard deviation) “vgw 7 _, *
curved tracks with noise per event : we
Triangles: True track parameters ] O o
Circles: Regressed track parameters..| @& Gy ® 9
Colors indicate clusters .




Transformers - Encoder-only Regressor

® This architecture only uses an only an encoder as a regressor (sequence to sequence)
® Regresses track parameters, followed by agglomerative clustering
® Also a one-shot approach, although extra clustering step is required
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U-net Model

}
| Skip connection
' =

Skip connection
Interpolated

Skip connection " output track

Sparse
input hits

Vanilla convolutions are replaced by submanifold sparse

convolutions [10]. This ensures that convolution operations are
only executed in places where there is information in the input

Binary cross entropy
with weight for classes

| N
LoBeE=—7 Y w1 pi log p; + wa (1 —p;) log (1 — p;)]
i=1
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[9] Ronneberger O, Fischer P, Brox T (2015). "U-Net: Convolutional Networks for Biomedical Image Segmentation”. arXiv:1505.04597
[10] Graham, Benjamin, and Laurens Van der Maaten. "Submanifold sparse convolutional networks." arXiv preprint arXiv:1706.01307 (2017).


https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1505.04597

U-net Model
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Spectral
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DBSCAN

Class 1 + Class1

« Class1 +« Class1
Class 2 + Class2 + Class 2 . Class 2
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D

. Optimal number of clusters can be DBSCAN struggles when borders
determined using different metrics of tracks are not well defined. Its

even for those algorithms that are performance can improved by
N 8\‘1'0‘- — not strictly based on densities! increasing resolution of tensor

Number of clusters
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Conclusions and Future Developments

® Developing a systematic approach to optimal ML(-assisted) model finding in the
context of charged particle tracking
® Models currently considered showing promising results in ~50 tracks REDVID data

Future Developments

® Can fill out table for first few complexity steps in systematic approach soon for all
models, most developments now ongoing in U-net approach

® For the transformer models developments have started on trackML dataset,
challenges largely computational

A Level 1 | Level2 | Level3

Algorithm accuracy
=
<

Alg. 1
Alg. 2
Alg. 3
Alg. 4

1o B « @ [T

TrackML [5] simulated event T Srmutation complexity
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[5] Calafiura, Polo, et al. "Trackml: a high energy physics particle tracking challenge." 2018 IEEE 14th International Conference on e-Science
(e-Science). IEEE, 2018.
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Submanifold Sparse Convolutions

OO
000

Sparse convolutions only consider input
"active sites” and the kernel does
process the entire image

This still causes sub manifold dilation

To remedly this, submanifold Sparse Output Submanifold Output
convolutions are proposed, which only a [mane| a2 n
calculate outputs for active input sites, gl i n

i.e. no dilation s




DBSCAN

e A point pis a core point if at least
minPts points are within distance € of it
(including p).

e A point gis directly reachable from p it
point g is within distance &€ from core
point p. Points are only said to be
directly reachable from core points.

e A point g is reachable from p if there is a

path p1, ..., pn wWith p1 = pand p, = g, In this diagram, minPts = 4. Point A and the other red points
where each pi.1 is directly reachable are core points, because the area surrounding these points
in an € radius contain at least 4 points (including the point
itself). Because they are all reachable from one another, they
form a single cluster. Points B and C are not core points, but
are reachable from A (via other core points) and thus belong

exception of q. to the cluster as well. Point N is a noise point that is neither
o All points not reachable from any other a core point nor directly-reachable.

from p;. Note that this implies that the
initial point and all points on the path
must be core points, with the possible

point are outliers or noise points




Spectral Clustering

Clusters uses connectivity between datapoints to create clusters.

Uses eigenvalues and eigenvectors of the data matrix to forecast the data into lower
dimensions space to cluster the data points. Based on the idea of a graph
representation of data where the data point are represented as nodes and the similarity
between the data points are represented by an edge.

K-means Spectral clustering

’\C:’ ’\,'2* \C,,.f
" | I. | | | " | I. | | | T | I. | | |
-1.0 0.0 05 1.0 -1.0 0.0 05 1.0 -1.0 0.0 05 1.0

The Davies-Bouldin score is defined as the average similarity measure of each cluster
with its most similar cluster, where similarity is the ratio of within-cluster distances to

between-cluster distances. Thus, clusters which are farther apart and less dispers
result in a better score.




Agglomerative Clustering

Agglomerative clustering iteratively adds closest points to clusters, starting with all
points as singleton clusters, until all points are connected, at which state a cut in the
distance results in a corresponding number of clusters
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Charformer
(Tay et al., 2021)

TokenLearner

Perceiver (Ryoo etal., 2021)

(Jaegle et al., 2021)

Transformer-XL
(Dai et al., 2019)

Nystromformer
(Xiong et al., 2019)

Memory /
Downsampling

Memory

Compressed
(Liu et al,, 2018)

Recurrence

Compressive

Transformer
(Rae et al., 2018)

Performer \
(Choromanski et al., 2020) \

Low-Rank Transformer
(Winata et al., 2020)

Set Transformer
(Lee etal., 2019)

. Clusterformer
Routing (Wang et al., 2020)
Transformer

(Roy et al., 2020)

Funnel
Transformer
(Dai et al., 2020)
ETC Big Bird

(Ainslie et al., 2020) (Zaheer et al., 2020)

Poolingformer
(Zhang et al., 2021)

Reformer
(Kitaev et al., 2020)

Longformer Swin
(Beltagy et al., 2020) Transformer

Clustered Attention

/ Sinkhorn (Vyas et al., 2020)
/ (Liu et al., 2020)
i Low Rank/ | Lona Short Transforme
Linformer ,‘ = gf i . (Tay etal., 2020b) |
wees.mm  Kernels —[Transtomer|  Fixed/Factorized/ | AN
— Random Patterns .
; ynthesizer '
Random Feature Atiention \SPBESES)/ CoNet Gshard  Transformer
SBT3 TS sy (Huang et al, 2018) (Lepikhin et al. 2020) (Conaass 2w
(Qiuetal., 2019)
Linear Sparse  clam
Transformer Sparse Transformer P (Du etal, 2021)
(Katharopoulos et al., 2020) Image Transformer €], Z5P) Switch
(Parmar et al., 2018) Transformer Product Key
Axial Transformer (Fedus et al, 2021) Memory

(Hoetal, 2019) (Lample et al,, 2019)

Scaling Transformer
(Jaszczur et al,, 2021)
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Yi Tay, Mostafa Dehghani, Dara Bahri, & Donald Metzler. (2022). Efficient Transformers: A Survey.

Efficient Transformers

Model / Paper Complexity | Decode | Class
Memory Compressed (Liu et al., 2018) O(N?) v FP+M
Image Transformer (Parmar et al., 2018) O(N.m) v FP

Set Transformer (Lee et al., 2019) O(kN) X M
Transformer-XL (Dai et al., 2019) O(N?) v RC
Sparse Transformer (Child et al., 2019) O(NVN) v FP
Reformer (Kitaev et al., 2020) O(NlogN) v LP
Routing Transformer (Roy et al., 2020) O(N+/N) v LP
Axial Transformer (Ho et al., 2019) O(NVN) v FP
Compressive Transformer (Rae et al., 2020) O(N?) v RC
Sinkhorn Transformer (Tay et al., 2020b) O(B?) v LP
Longformer (Beltagy et al., 2020) O(n(k +m)) v FP+M
ETC (Ainslie et al., 2020) O(NZ + NNg) X FP+M
Synthesizer (Tay et al., 2020a) O(N?) v LR+LP
Performer (Choromanski et al., 2020a) O(N) v KR
Funnel Transformer (Dai et al., 2020) O(N?) v FP+DS
Linformer (Wang et al., 2020c) O(N) X LR
Linear Transformers (Katharopoulos et al., 2020) O(N) v KR
Big Bird (Zaheer et al., 2020) O(N) X FP+M
Random Feature Attention (Peng et al., 2021) O(N) v KR
Long Short Transformers (Zhu et al., 2021) O(kN) v FP + LR
Poolingformer (Zhang et al., 2021) O(N) X FP+M
Nystromformer (Xiong et al., 2021b) O(kN) X M+DS
Perceiver (Jaegle et al., 2021) O(kN) v M-+DS
Clusterformer (Wang et al., 2020b) O(NlogN) X LP
Luna (Ma et al., 2021) O(kN) v M
TokenLearner (Ryoo et al., 2021) O(k?) X DS
Adaptive Sparse Transformer (Correia et al., 2019) O(N?) v Sparse
Product Key Memory (Lample et al., 2019) O(N?) v Sparse
Switch Transformer (Fedus et al., 2021) O(N?) v Sparse
ST-MoE (Zoph et al., 2022) O(N?) v Sparse
GShard (Lepikhin et al., 2020) O(N?) v Sparse
Scaling Transformers (Jaszczur et al., 2021) O(N?) v Sparse
GLaM (Du et al., 2021) O(N?) v Sparse
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