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Anomaly detection in HEP

e The standard model (SM) was
completed with the discovery of the
Higgs boson

« There are strong motivations for physics

beyond the standard model (BSM).

« The nature of dark matter and dark energy
* the mass of neutrinos etc....

* The large hadron collider (LHC) at CERN
can shed light on these challenges




Most searches for new physics at CERN target specific experimental
signatures

* The lack of a predefined target might turn this strength into a limitation

* Model dependence may have created blind spots

* Machine learning techniques have become the advocated avenue to reduce model
dependence

When in the data processing pipeline the anomaly detection happens.
* Most anomaly detection is historically offline analysis
» There is a vast phase space deleted in real time

 Level-1 trigger rejects over 98% of events using algorithms implemented on custom
electronic boards; optimized to accept for physics processes under study

« Anomaly detection algorithms on L1 trigger could potentially improve event selection
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 Generative models  Easier to train:

« Shape distribution of latent * parametric-free (compared to GANs);
space Into any sampleable e almost hyperparameter-free (compared to
probability distribution MMD with kernels)
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« Autoencoder loss is regularized Lower computational complexity

with the sliced-Wasserstein *  Good for FPGA code synthesis
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Latent space anomaly

detection

* Models generalize so well that they can + o
also well reconstruct anomalies.
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« Use the latent space distribution with
the associated reconstruction error
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Experiments

« Using the ML4JETS dataset.
We attempted to distinguish
signal from background

 Different prior distributions
were implemented
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Choice of latent prior

« Showed no improvement in the AUC for anomaly detection based on the choice of prior
« The signal data is forced into the same distribution as the background encoding
* The MSE as an anomaly metric is oblivious to how the data is distributed
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Uniform prior

Background encoding
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Using a uniform prior:
» Encoding space is not overly constrained and naturally
took on a gaussian distribution.

Allowing for anomaly detection using the encoding space
« MSE reconstruction + Mahalanobis distance
* Identify anomalies the MSE would miss

Results:
« Showed 20% improvement in AUC for signal_1
* 5% improvement in AUC overall



Conclusions

« Choice of prior doesn’'t inherently
impact model’s ability to identify
anomalies

* Choice of latent prior impacts
potential for latent space anomaly
detection

* Latent anomaly detection shows
improvements in anomaly detection
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Future Research e o
e Gromov Wasserstein Autoencoders

* More sophisticated latent space
anomaly detection measures

« Use the distribution to identify the
difference between genuine and
superficial anomaly
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