Non-Gaussian Sliced Wasserstein Autoencoders for Anomaly Detection in High Energy Physics

Thomas Stern

Supervisors: Amit Mishra, James Keaveney

Non-Gaussian Wasserstein Auto Encoders

- Anomaly detection in HEP
- Sliced Wasserstein Autoencoders
- Latent space anomaly detection
- Experiments + Results
- Conclusions + Future research

Anomaly detection in HEP

- The standard model (SM) was completed with the discovery of the Higgs boson
- There are strong motivations for physics beyond the standard model (BSM).
 - The nature of dark matter and dark energy
 - the mass of neutrinos etc....
- The large hadron collider (LHC) at CERN can shed light on these challenges

Most searches for new physics at CERN target specific experimental signatures

- The lack of a predefined target might turn this strength into a limitation
- Model dependence may have created blind spots
- Machine learning techniques have become the advocated avenue to reduce model dependence

When in the data processing pipeline the anomaly detection happens.

- Most anomaly detection is historically offline analysis
- There is a vast phase space deleted in real time
- Level-1 trigger rejects over 98% of events using algorithms implemented on custom electronic boards; optimized to accept for physics processes under study
 - Anomaly detection algorithms on L1 trigger could potentially improve event selection

Sliced Wasserstein Autoencoder

- Generative models
- Shape distribution of latent space into any sampleable probability distribution
- Autoencoder loss is regularized with the sliced-Wasserstein distance

- Easier to train:
 - parametric-free (compared to GANs);
 - almost hyperparameter-free (compared to MMD with kernels)
- Lower computational complexity
 - Good for FPGA code synthesis

Latent space anomaly detection

• Models generalize so well that they can also well reconstruct anomalies.

• Use the latent space distribution with the associated reconstruction error

Experiments

- Using the ML4JETS dataset. We attempted to distinguish signal from background
- Different prior distributions were implemented

Choice of latent prior

- Showed no improvement in the AUC for anomaly detection based on the choice of prior
- The signal data is forced into the same distribution as the background encoding
- The MSE as an anomaly metric is oblivious to how the data is distributed

Uniform prior

Background encoding

Signal encoding

• Using a uniform prior:

• Encoding space is not overly constrained and naturally took on a gaussian distribution.

• Allowing for anomaly detection using the encoding space

- MSE reconstruction + Mahalanobis distance
- Identify anomalies the MSE would miss

• Results:

- Showed 20% improvement in AUC for signal_1
- 5% improvement in AUC overall

9

Conclusions

- Choice of prior doesn't inherently impact model's ability to identify anomalies
- Choice of latent prior impacts potential for latent space anomaly detection
- Latent anomaly detection shows improvements in anomaly detection

Future Research

- Gromov Wasserstein Autoencoders
- More sophisticated latent space anomaly detection measures
- Use the distribution to identify the difference between genuine and superficial anomaly

Thank You