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Measuvrement

= How to alleviate the risk of hidden systematic uncertainties

> independent confirmation from a different experiment

Under which condition one can claim a physics = Deep Learning (DL) Advocate
discovery in an experiment which has unique physics to quantitatively address the
sensitivity and therefore no direct competitors? unknown unknowns
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l The traditional logic flow of a measurement

( Detector parametersj
Measurements ]
Detector parameters l [

' F(n,8) = My
.F(ﬁ,ﬂz) — Mz —> F(ﬁ,ﬂg) — MQ

[Physics parametersJ

Physics parameters >M or NP?
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| The DLAdvocate logic flow

Detector parameters l [ Measurements ]

F(1n,€4) = M; = { F(n, Q) = Mo

( Detector parametersj

Physics parameters Can | explain an anomaly | see in the data

by modifying the detector parameters?

Playing the DL advocate: employ Deep Learning to systematically check alll*] possible effects

[*] For the moment we will focus on the detector efficiency 5



' A simple example: a BR measurement

= Signal mode:

| 30.6 * P VCiy=0l1
» P — V(— AB)C with mass my, . PO XCory =08
s P YC fy=0.7
= Control channel(s): 0.4
» P—> X(—- AB)C -
» P—> Y(—- AB)C |
with known masses mX(Y) 0.0 I
8
Different masses —¥% different kinematic! log(max(py;, ps))

B Detector efficiency typically depends on kinematics (e.g. pT)
B A mismodelling of the efficiency will affect differently signal and control channels

B How a mismodelling of the efficiency can bias the signal given the constraints
provided by the control channels



Key 1dea - step 1

= Train a classifier to distinguish the

, classification
different channels

score
. 0g0a®
> The “perfect” classifier would be able to “gj/ﬁ}’;{a . h;
completely separate the phasespace of ~ €vVentieatures 4/’)'%1’»*"!%1;«"'\
the different channels (from MC). ®vOw®
> control channels impose no constraints track pT f
on the signal

> | can arbitrarily modify the efficiency to
bias the signal without touching the
control channels

perfect reality
classifier

» Overlapping response will give the level

of constraints provided by the different
channels
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Key 1dea - step 2

= Linear combination of NN output nodes NN
to determine mismodelling weight as J
function of the input detector features - }1‘ [T~~~ T,
‘vv ‘\'l\ : J i
W v .
= 1 perfect efficiency ‘/, m.‘@f‘ § aj |
W(X1) < 1 efficiency over-estimated X Vz‘“\:\tx(.‘\:\tx. g @ rOw
| £ .
> 1 efficiency under-estimated \\®! ‘X\QI\ ;X\QI\. ? /3v :
4& 4& |
O | .
’t‘n,’t{\ /I S

Channel efficiency

N a - h(agy)

Evaluated on MC sample —g-'*




' Key idea - step 2

Goal of the algorithm:

Check how biased can be the signal efficiency

es — min

while keeping the control channel efficiency within certain limits

high
e; © [Vilow; V " | 4+— from measurements

Channel efficiency

Evaluated on MC sample




Training

= |terative procedure:
O. NN pretrained as a pure classifier

1. update @’

> simple minimization with constraints
2. update NN parameters
» £(0) =e,—log ‘det(H)‘

keeps matrix invertible
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Training

X
= |terative procedure:
O. NN pretrained as a pure classifier
1 d t —_ 0.975 A =
-update @ | MISSS o
> simple minimization with constraints 0.925 - — y=03
— my=0.4
. 0.900 A L
2. update NN parameters o v
— my=0.7
» £(0) = e,—log |det(H)| + 2, — o
0.825 A my = 0.9
keeps matrix invertible | | | | | |
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A simple example: results

» Target measurement of B(P — VC) as function of m,,

» Control channels:

> 100 T [ ' ' ' | ' ' ' I ' ' ' I .
S i = NN(max p, aas)
B(P — XC) xepxc € [—3%,3%], 2 ool : NNEI;;,ng, ) -
B(P -Y(C) ep.yc e : :
B(P — XC)  epoxc € =1%, 1% g . i
= 00 ~
CS B -
E 40 B -
20 | -
O | M | I TP I_Ll_l_l_l_l_L-
0.2 0.4 O.6T T 0.8
my My "

B As expected, maximum allowed bias depends on the mass -
—+ But quantifiable now!

(kinematic overlap) between signal and control channels '
12




| Going low level...

= So far, only considered reconstructed quantities (high levels)

= However, everything that happens in the detector happens at low level

> Hits, energy deposit, material interaction, etc.

reward
R,

= MC simulation cannot be described in a parametric way state

action
A,

i Rt+1 (
S.. | Simulation

> Requires a different formulation of the problem

I+

> [nteractive tuning of the simulation —% RL ?

> Tested (with high level quantities) on an other example of flavour
physics (angular analysis of rare B decay)

—



' Conclusions

= Presented method to systematically investigate potentially hidden systematics
= Jested on a simple example

= Fully general: can be extended to any measurement that relies on simulation!

Thank you!



