Imperial College London

The DLAdvocate: playing the devil's advocate with hidden systematic uncertainties

Andrei Golutvin¹, Aleksander Iniukhin², <u>Andrea Mauri</u>¹, Patrick Owen³, Nicola Serra³, Andrey Ustyuzhanin⁴

based on arXiv:2303.15956

- ¹ Imperial College London
- ² Yandex School of Data Analysis
- ³ Universität Zürich
- ⁴ National University Singapore

Motivation

Central value + Statistical uncertainty + Systematic uncertainty + Systematic uncertainty

- How to alleviate the risk of *hidden systematic uncertainties*
 - independent confirmation from a different experiment

Under which condition one can claim a physics discovery in an experiment which has unique physics sensitivity and therefore no direct competitors?

 Deep Learning (DL) Advocate to quantitatively address the unknown unknowns

Motivation

Measurement

Central value

土

Statistical uncertainty

土

Systematic uncertainty

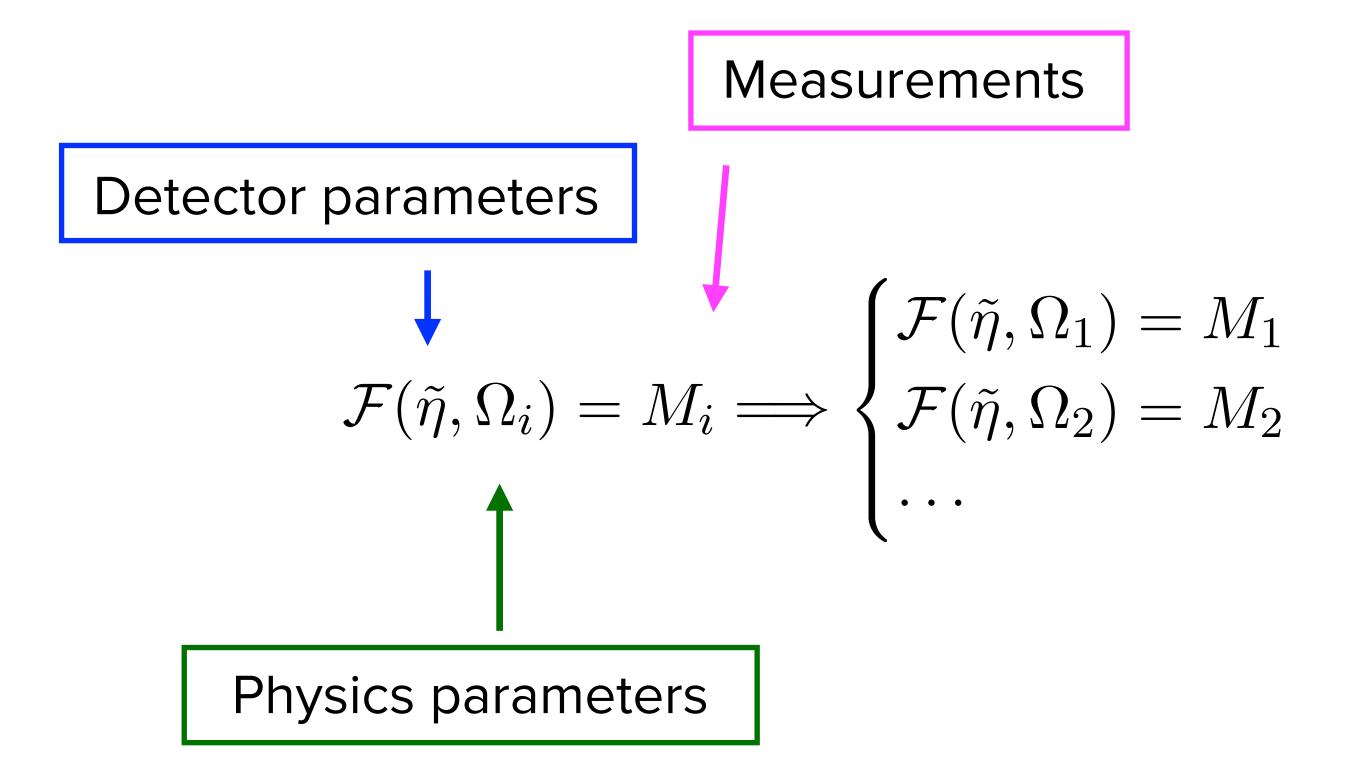
Hidden systematic uncertainty

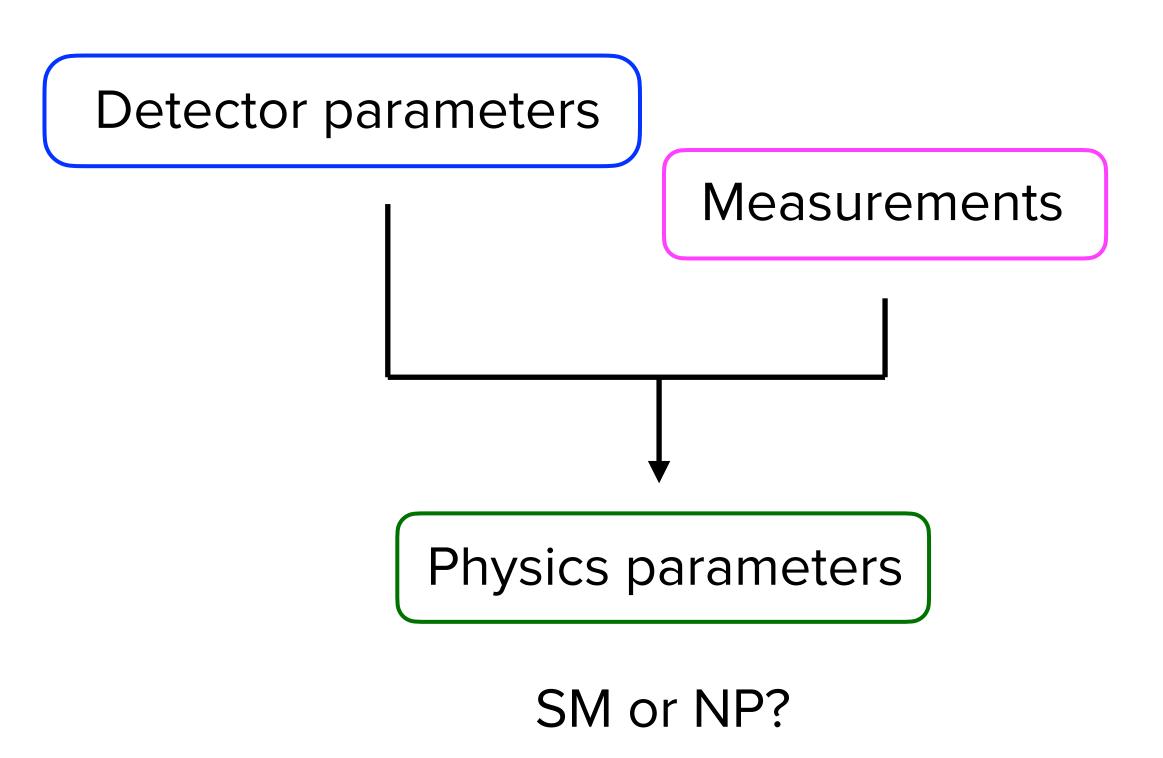
- How to alleviate the risk of *hidden systematic uncertainties*
 - independent confirmation from a different experiment

Under which condition one can claim a physics discovery in an experiment which has unique physics sensitivity and therefore no direct competitors?

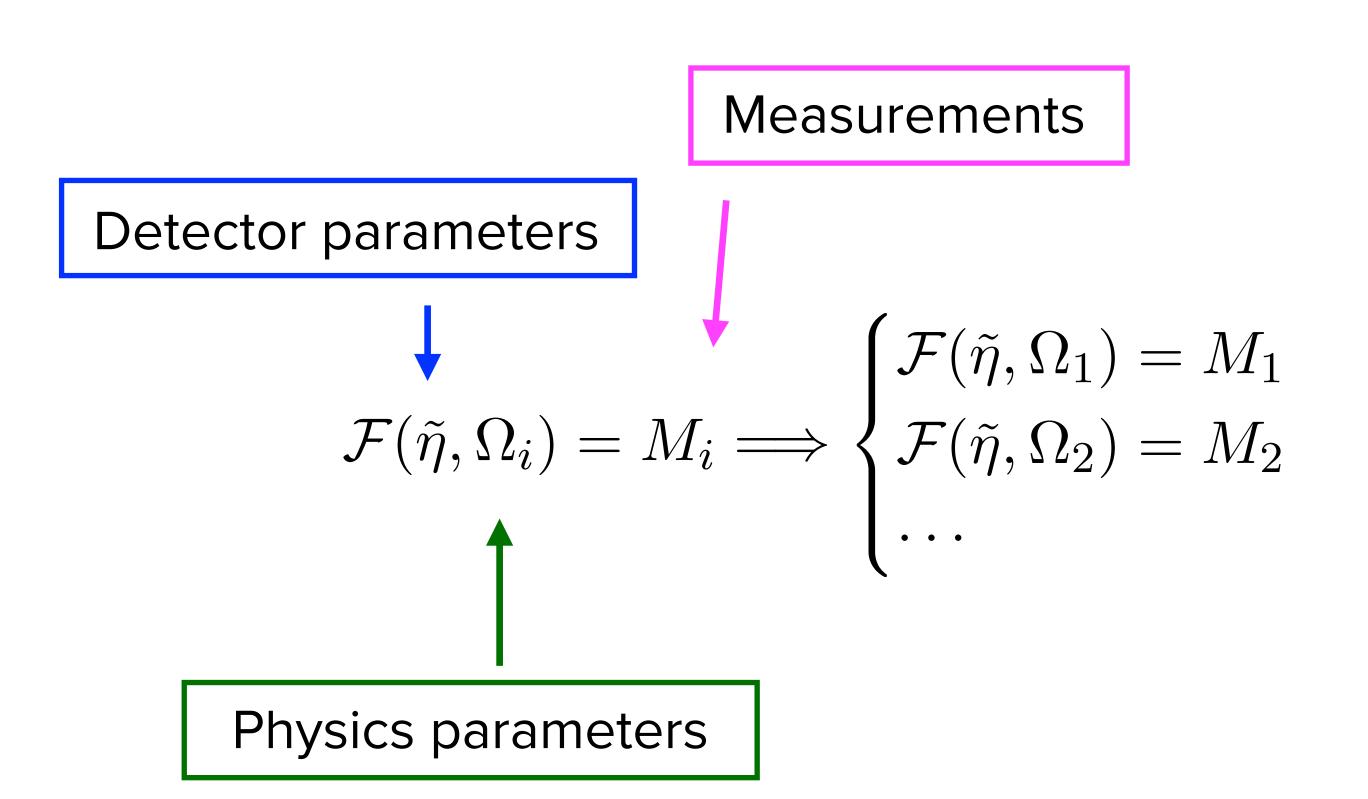
 Deep Learning (DL) Advocate to quantitatively address the unknown unknowns

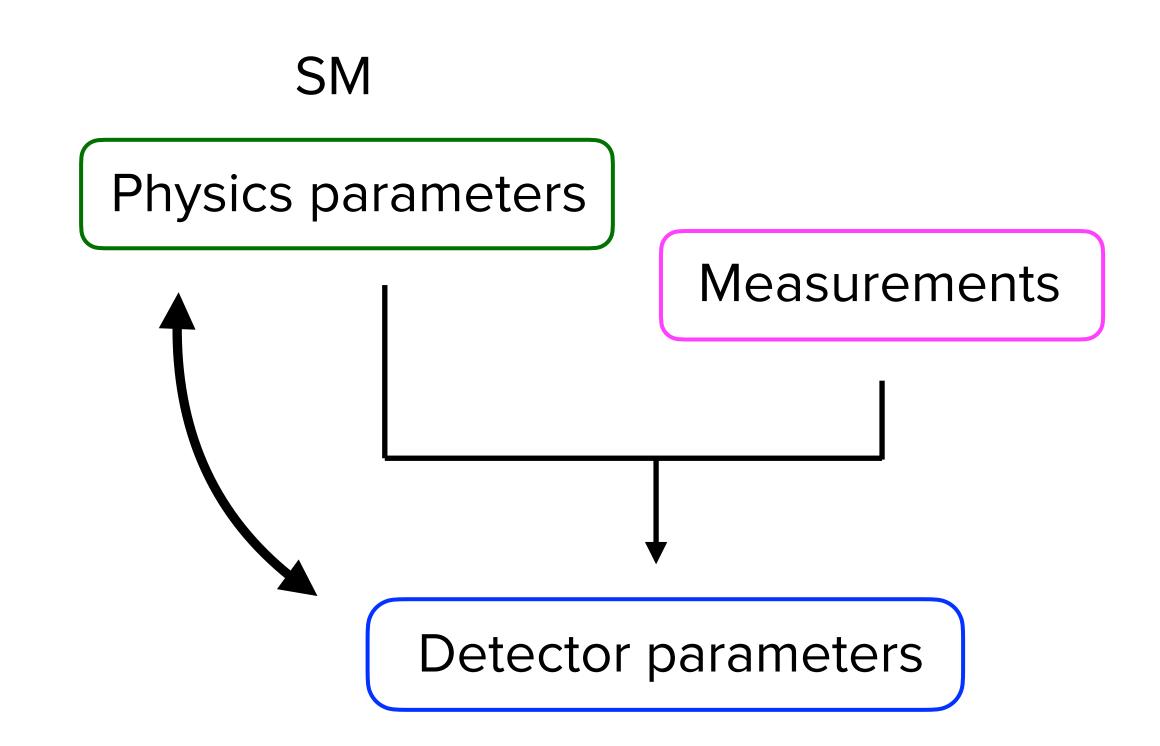
The traditional logic flow of a measurement





The DLAdvocate logic flow





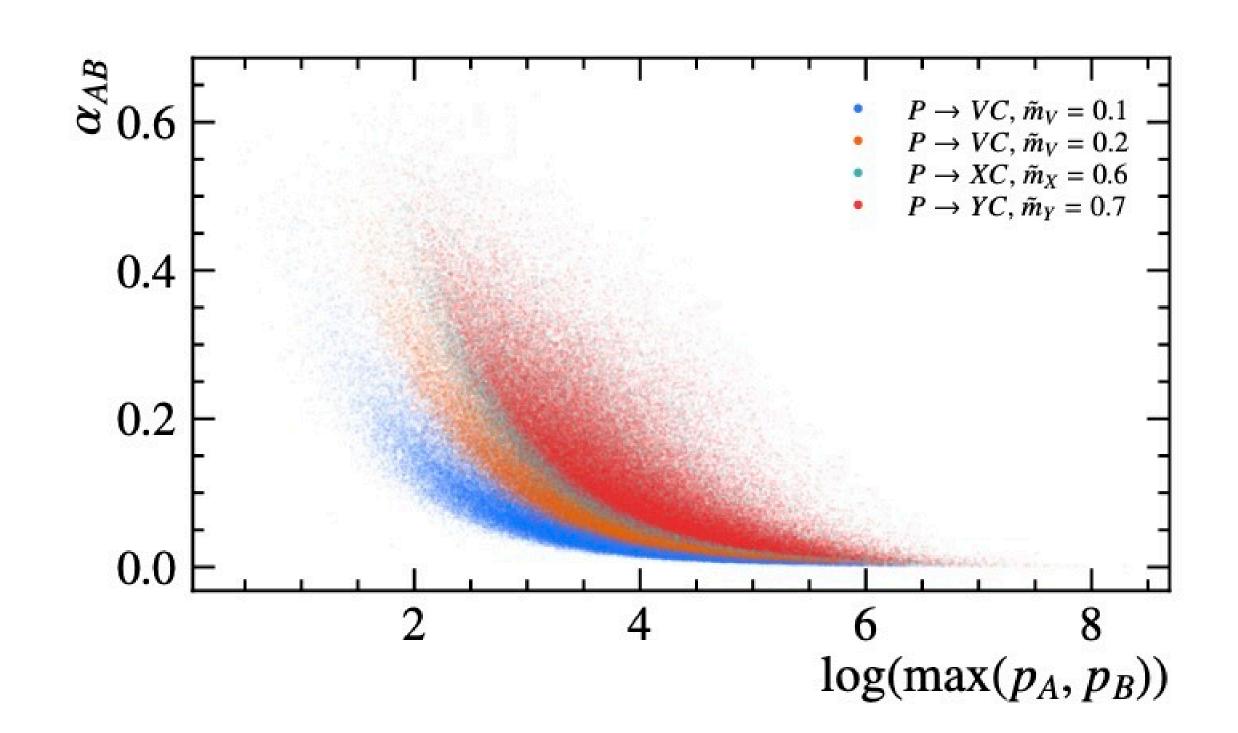
Can I explain an anomaly I see in the data by modifying the detector parameters?

Playing the DL advocate: employ Deep Learning to systematically check all[*] possible effects

A simple example: a BR measurement

- Signal mode:
 - ightharpoonup P
 ightarrow V(
 ightarrow AB)C with mass m_V
- Control channel(s):
 - ightharpoonup P
 ightharpoonup X(
 ightharpoonup AB)C
 - ightharpoonup P
 ightharpoonup Y(
 ightharpoonup AB)C

with known masses $m_{X(Y)}$

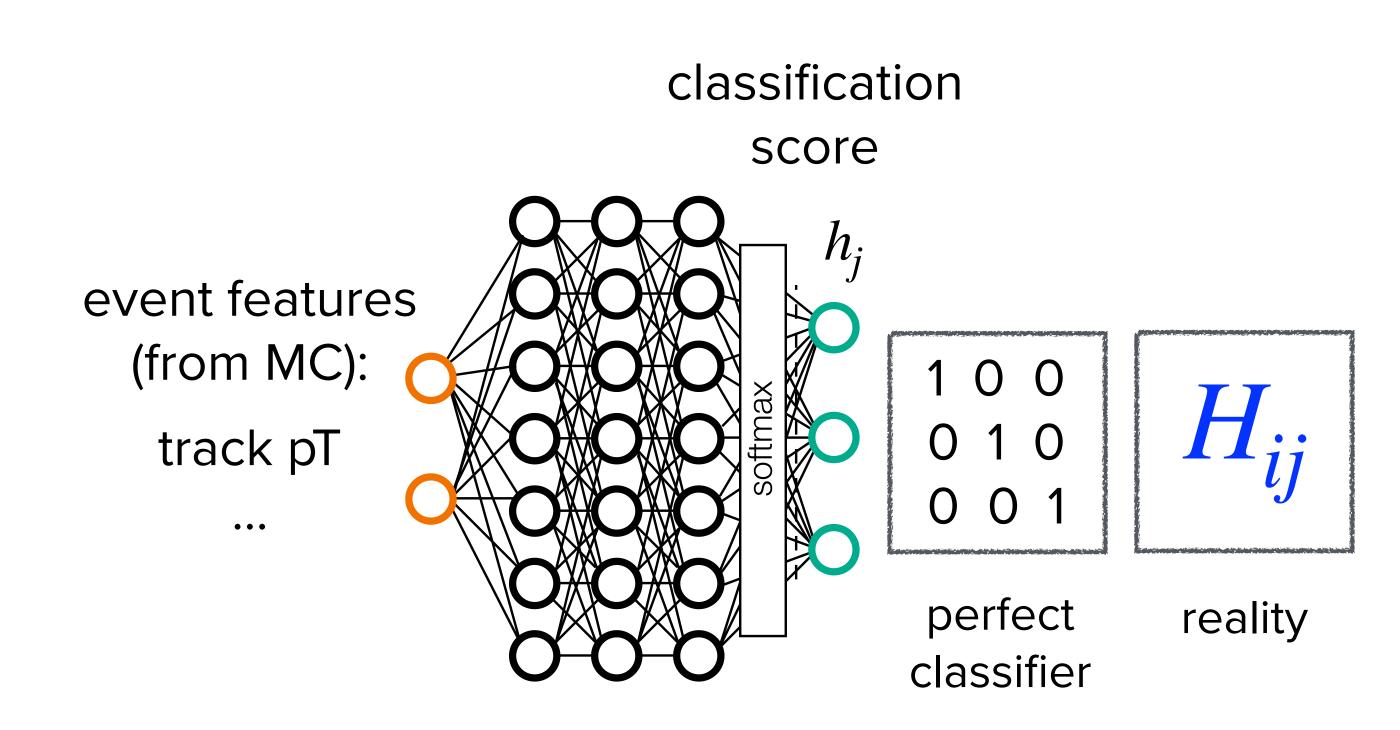


Different masses --- different kinematic!

- Detector efficiency typically depends on kinematics (e.g. pT)
- A mismodelling of the efficiency will affect differently signal and control channels
- How a mismodelling of the efficiency can bias the signal given the constraints provided by the control channels

Key idea - step 1

- Train a classifier to distinguish the different channels
- The "perfect" classifier would be able to completely separate the phasespace of the different channels
 - control channels impose no constraints on the signal
 - I can arbitrarily modify the efficiency to bias the signal without touching the control channels
- Overlapping response will give the level of constraints provided by the different channels



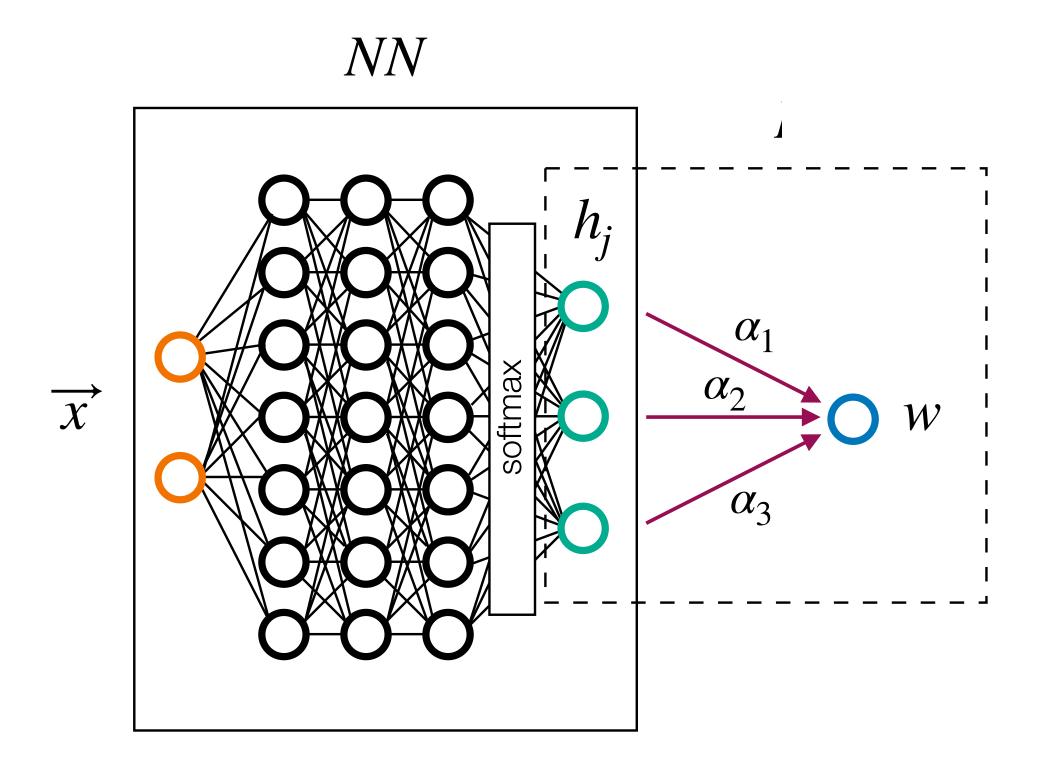
Key idea - step 2

 Linear combination of NN output nodes to determine mismodelling weight as function of the input detector features

$$w(x_i) \begin{cases} = 1 \text{ perfect efficiency} \\ < 1 \text{ efficiency over-estimated} \\ > 1 \text{ efficiency under-estimated} \end{cases}$$

Channel efficiency

$$e_i = \frac{1}{n_i} \sum_{k} \vec{\alpha} \cdot \vec{h}(x_{k,i})$$



Evaluated on MC sample

to de func

Goal of the algorithm:

Check how biased can be the signal efficiency

$$e_s \rightarrow \min$$

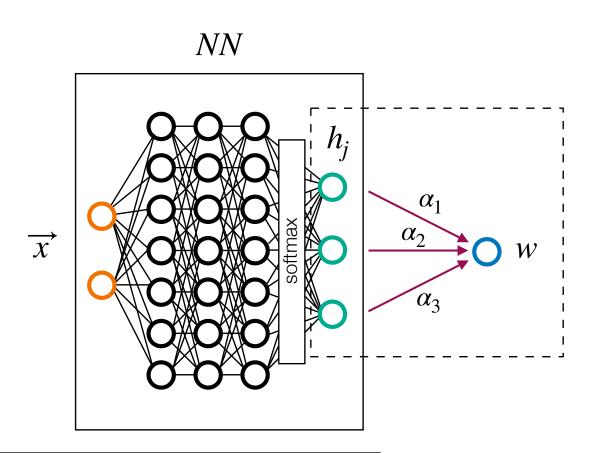
while keeping the control channel efficiency within certain limits

$$e_i \in [V_i^{low}; V_i^{high}]$$
 from measurements

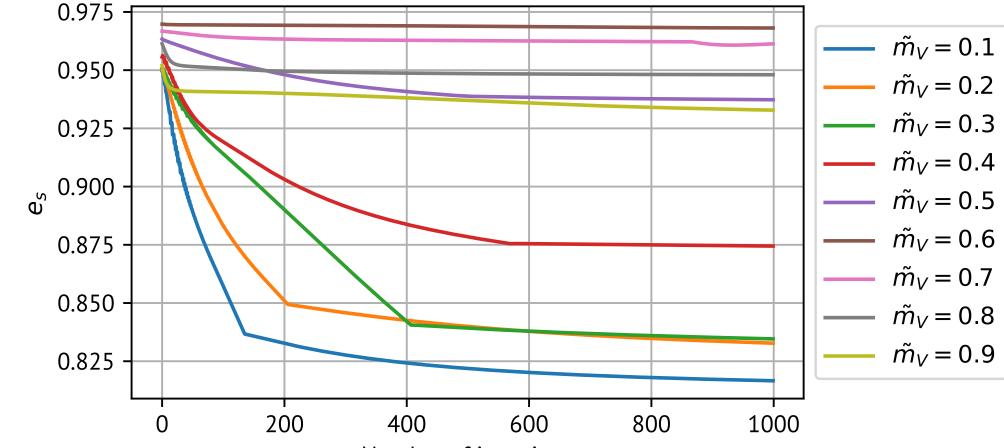
$$e_i = \frac{1}{n_i} \sum_{k} \vec{\alpha} \cdot \vec{h}(x_{k,i})$$

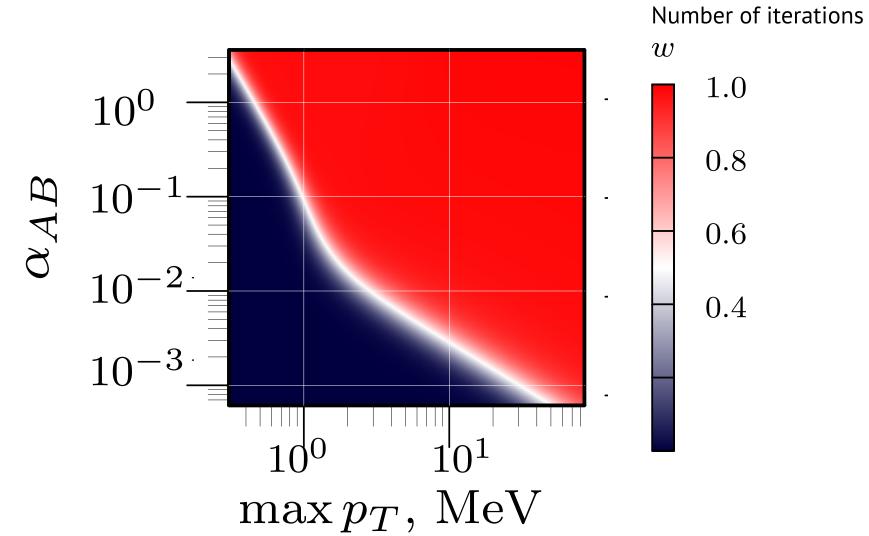
Training

- Iterative procedure:
 - O. NN pretrained as a pure classifier
 - 1. update $\overrightarrow{\alpha}$
 - simple minimization with constraints
 - 2. update NN parameters
 - $\mathcal{E}(\theta) = e_s \log \left| \det(H) \right|$ keeps matrix invertible



10





Training

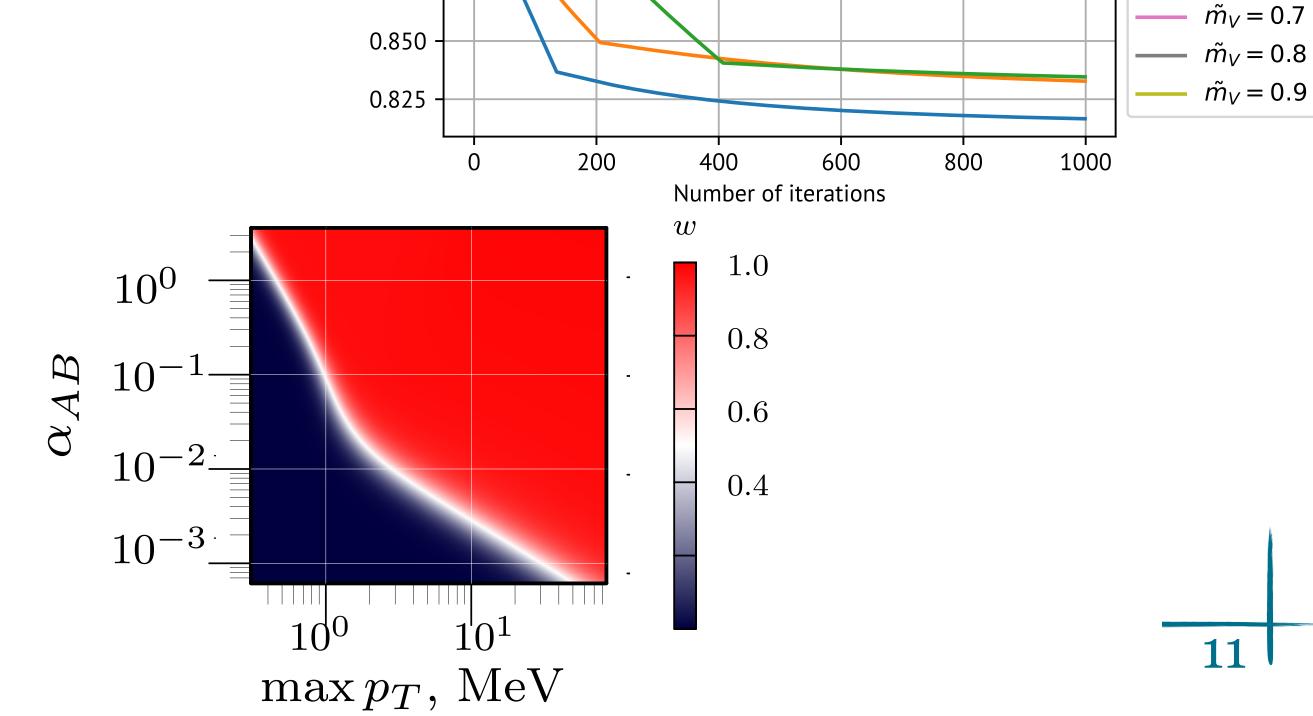
- Iterative procedure:
 - O. NN pretrained as a pure classifier
 - 1. update $\overrightarrow{\alpha}$
 - simple minimization with constraints
 - 2. update NN parameters

$$\mathcal{\ell}(\theta) = e_s - \log \left| \det(H) \right| + \ell_g$$

$$\text{keeps matrix invertible}$$

$$\text{regulariser}$$

$$\ell_g(\theta) = \sum \left[\max \left(\frac{||\nabla \overrightarrow{h}(x_k, \theta)||}{p} - 1, 0 \right) \right]^2$$



0.975

0.950

0.925

0.875

ى 0.900

NN

 $\tilde{m}_V = 0.1$

 $\tilde{m}_V = 0.2$

-- $\tilde{m}_V = 0.3$

 $\tilde{m}_V = 0.4$

--- $\tilde{m}_V = 0.5$

 $\tilde{m}_V = 0.6$

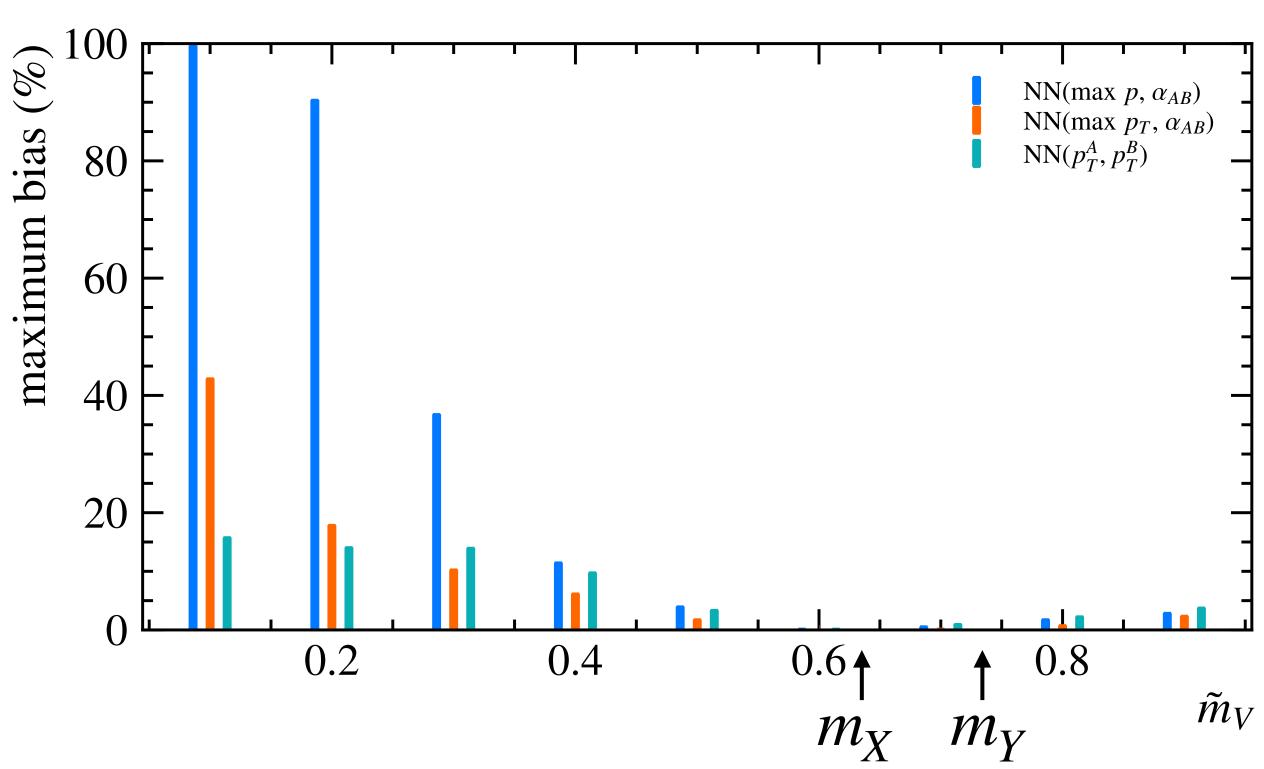
11

A simple example: results

- ▶ Target measurement of $\mathcal{B}(P \to VC)$ as function of m_V
- Control channels:

$$\mathcal{B}(P \to XC) \propto e_{P \to XC} \in [-3\%, 3\%],$$

$$\frac{\mathcal{B}(P \to YC)}{\mathcal{B}(P \to XC)} \propto \frac{e_{B \to YC}}{e_{P \to XC}} \in [-1\%, 1\%]$$

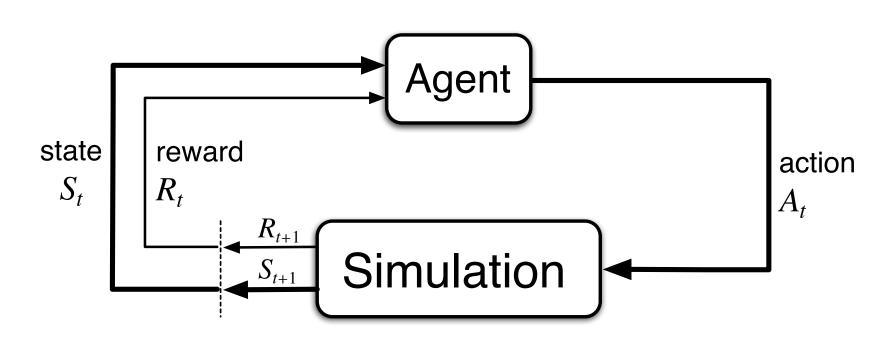


 As expected, maximum allowed bias depends on the mass (kinematic overlap) between signal and control channels

But quantifiable now!

Going low level...

- So far, only considered reconstructed quantities (high levels)
- However, everything that happens in the detector happens at low level
 - Hits, energy deposit, material interaction, etc.
- MC simulation cannot be described in a parametric way
 - Requires a different formulation of the problem
 - Interactive tuning of the simulation RL?
 - ► Tested (with high level quantities) on an other example of flavour physics (angular analysis of rare *B* decay)



Conclusions

- Presented method to systematically investigate potentially hidden systematics
- Tested on a simple example
- Fully general: can be extended to any measurement that relies on simulation!

Thank you!