

SR-GAN for SR-gamma: super resolution of photon calorimeter images at collider experiments Eur. Phys. J. C 83 (2023) 1001

Johannes Erdmann¹, Aaron van der Graaf², Florian Mausolf¹, Olaf Nackenhorst² [1] III. Physikalisches Institut A, RWTH Aachen University [2] Department of Physics, TU Dortmund University

ML4Jets 2023 6th November 2023 Hamburg

technische universität dortmund

Funded by

German Research Foundation

Photons are important at the LHC

• E.g. $H \rightarrow \gamma \gamma$: clean channel to study the Higgs boson

- Signature: cluster of energy depositions in the electromagnetic calorimeter (ECAL)
- Rejecting backgrounds is crucial and challenging
 - Main source: collimated photons from Lorentz-boosted $\pi^0 \rightarrow \gamma \gamma$ decays
- Granularity of ECAL is key feature for photon localisation and background suppression

Photons at collider experiments

 $\pi^0 \to \gamma \gamma$

photon

[cds.cern.ch/record/2736135/]

- Super-resolution (SR): estimate of a high resolution (HR) image from a single low resolution (LR) image
- Intensively studied in the field of image processing
- Has been studied in the context of pion reconstruction, jet substructure, and refinement of fast simulations [2003.08863], [2012.11944], [2308.11700]

Can we improve photon reconstruction by learning from the simulation of a better calorimeter?

- Geant4 simulation of photons and $\pi^0 \rightarrow \gamma \gamma$ with 20 GeV and 50 GeV particle gun
- Simplified PbWO₄ ECAL inspired by CMS barrel
 - HR ECAL has 4×4 more crystals
- Simulation of LR-HR calorimeter image pairs
- Selection of high-energy part
- Normalisation and power-scaling: $E \rightarrow \left(\frac{E}{E_{tot}}\right)$

Simulated samples & pre-processing

- Model inspired by Enhanced Super-Resolution GAN (ESRGAN) [1809.00219]
- Trained using Wasserstein loss •

Generator

Model architecture

- Training dataset: 100k photon and 100k pion examples
- Improved training on 2-classes dataset by adding novel, physics-inspired perceptual loss to GAN training
 - Using features Φ extracted from pre-trained CNN:

$$\mathscr{L}_{\text{per}} \propto \left(\Phi(\text{HR}) - \Phi(\text{SR}) \right)^2$$
 [1603.0815

- CNN trained on our HR images to separate photons from pions
- One model for each simulated particle energy as first step
 - Preliminary studies show same architecture also successful on continuous energy spectrum

Network training

55]

Convincing quality of SR images

7

Florian Mausolf, ML4Jets, 6th November 2023, Hamburg

SR image examples

Networks generate details which are not obvious from LR images by eye

- Width as example of a shower-shape variable considered at LHC experiments
 - Discriminative features for background rejection, quality criteria for categorisations
- SR provides good approximation of HR distributions
 - Better for 20 GeV case due to Density 1400 stronger γ vs. $\pi^0 \rightarrow \gamma \gamma$ differences ¹²⁰⁰
- Separation between the classes 800 600 strongly increased over LR 400 200

8

Shower properties

SR / HR

Physics

Institute III A

- Photons localisation in experiments mostly calorimeter-based
 - No tracker signature in case of no $\gamma \rightarrow e^+e^-$ conversion
- Shower barycentre typically used for localisation
- Barycentres obtained from SR images are significantly closer to truth than from LR
 - Improved angular resolution
 - Possible improvement in mass resolution for diphoton events as $H \rightarrow \gamma \gamma$

9

Photon localisation

- Training of CNNs to separate photons from pions, either using LR or SR inputs
- Simple structure, same width and depth for LR and SR
- Similar performance when using large training datasets
- Strong improvements when training on small samples
 - Photon ID: typically limited background statistics

Impact on identification algorithms

Physics Institute III A

- Super resolution applied to photon calorimetry
- Improved reconstruction of photons!
 - Localisation of barycentres
 - Shower-shape reconstruction
- Application of particle-gun-based SR on full collider events to be studied
- Reference: <u>Eur. Phys. J. C 83 (2023)</u> 1001

Conclusions

Adapted ESRGAN architecture, enhanced with physics-inspired perceptual loss

Classifier training on SR images improves over LR for small training samples

12 Florian Mausolf, ML4Jets, 6th November 2023, Hamburg

13 Florian Mausolf, ML4Jets, 6th November 2023, Hamburg

Pion energies

- Known issue: GANs hard to train
- Training leads to smooth average images, no checkerboard artefacts
- Epoch with best agreement in width distributions selected

Network training

