CaloClouds: **Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation**

EB, S Diefenbacher et al: CaloClouds: Fast Geometry-Independent **Highly-Granular Calorimeter Simulation**

CLUSTER OF EXCELLENCE

Bundesministerium für Bildung und Forschung

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Nov. 7th, 2023

Erik Buhmann*, Sascha Diefenbacher, Engin Eren, Frank Gaede, Gregor Kasieczka, Anatolii Korol, William Korcari, Katja Krüger, and Peter McKeown

> EB, F Gaede, et al: CaloClouds II: Ultra-Fast Geometry-Independent **Highly-Granular Calorimeter Simulation**

Calorimeter Showers as Point Clouds

- Generative models for calorimeter showers usually applied to fixed geometries, i.e. CNNs for 3D images
 - Calorimeter showers are very sparse (only ~ 4% filled pixels)
- More economically represented as point clouds (variable-length, permutation-invariant sets)
 - Generation of only non-zero points
- Ability to use clustered Geant4 steps with higher granularity than sensor size
 - Allows for cell-geometry independent model
- <u>CaloClouds</u>: Fast & accurate generative model for calorimeter point clouds with $\mathcal{O}(1,000)$ points

EM shower as 3D image

27,000 pixels (~ 1,000 non-zero)

Data Processing

All GE Cluster Hits in

- Photon showers (10-90 GeV) in the electromagnetic calorimeter (ECAL) of the International Large Detector (ILD) at the International Linear Collider (ILC)
- Point clouds of clustered Geant4 steps: 36x higher granularity than cell hits, 7x fewer points than full Geant4 steps
 - Multiple points per cell & geometry independent

	points / shower	Note
EANT4 steps red GEANT4 steps	40 000 6 000	Initial output of GEANT4 Input/output of CALOCLOUDS
n calorimeter grid	1 500	Calculation of physics observab

etic calorimeter (ECAL) of the ional Linear Collider (ILC) her granularity than cell hits, International Large Detector (ILD)

CaloClouds Model

Training

Equivariant Point Cloud (EPiC) layers from: EB, G Kasieczka, J Thaler: **EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets**

Nov. 7th, 2023

Erik Buhmann

Sampling

Post-diffusion calibration: Number of points per layer, energy per layer, center of gravity in X and Y-direction

T diffusion steps

4

Diffusion Architecture

- Weight sharing across all points
- Each point independently sampled
- No interaction between points \rightarrow very fast sampling

Reverse diffusion process (100 steps)

Architecture from: S Luo, W Hu: Diffusion Probabilistic Models for 3D Point Cloud Generation

CaloClouds & CaloClouds II

- CaloClouds diffusion model based on discrete-time Quenoising Diffusion Probabilistic Models (DDPM) [1]
 - Number of diffusion steps: training = sampling
 - Here: 100 denoising steps
- CaloClouds II diffusion model based on a continuous-time diffusion model [2]
 - Allows for a variety of stochastic and ordinary differential equation solvers (ODE / SDE solvers)
 - Fewer & variable number of steps during sampling
 - Here: Heun ODE solver with 25 model evaluations
 - Allows for distillation into a consistency model [3]
 - Here: Consistency model for single-shot generation
- CaloClouds II: No latent space (no encoder & latent flow)

[1] J Ho et al.: Denoising Diffusion **Probabilistic Models**

[2] <u>T. Karras et al: Elucidating the</u> **Design Space of Diffusion-Based Generative Models**

[3] Y Song et al: Consistency Models

Training (CaloClouds II)

Sampling (CaloClouds II)

Consistency Models

- Consistency Models trainable standalone or distilled from a diffusion model
- Allow for single-step & multi-step generation

Consistency distillation:

Student model: updated via gradient descent Target model: updated via weight average

Y Song et al: Consistency Models

- All evaluations with point cloud showers projected to regular cell geometry
- Hit energy spectrum, radial energy profile, and longitudinal energy profile well modeled by all three CaloClouds variants (40,000 showers each)
- CaloClouds II models improve the radial energy profile \bullet

CaloClouds

Results: Single Incident Energies

- three CaloClouds variants (2,000 showers each)
- Number of hits better modeled by the CaloClouds II variants
- Expecting further improvements with wider energy range during training

Total visible energy & number of cell hits for single incident energies well modelled by all

Results: Metrics & Classifier

Simulator	$ \begin{matrix} W_1^{N_{\rm hits}} \\ (\times 10^{-3}) \end{matrix} $	$ \begin{array}{c} W_1^{E_{\rm vis}/E_{\rm inc}} \\ (\times 10^{-3}) \end{array} $	$ \begin{array}{c} W_1^{E_{\text{cell}}} \\ (\times 10^{-3}) \end{array} $	$ \begin{matrix} W_1^{E_{\text{long}}} \\ (\times 10^{-3}) \end{matrix} $	$W_1^{E_{ m radial}}$ $(imes 10^{-3})$	$W_1^{m_{1,X}}$ $(\times 10^{-3})$	$W_1^{m_{1,Y}}(\times 10^{-3})$	$W_1^{m_{1,Z}}$ (×10 ⁻³
Geant4	0.7 ± 0.2	0.8 ± 0.2	0.9 ± 0.4	0.7 ± 0.8	0.7 ± 0.1	0.9 ± 0.1	1.1 ± 0.3	$0.9\pm0.$
CaloClouds CaloClouds II CaloClouds II (CM)	$egin{array}{rl} {f 2.5\pm0.3}\ {f 3.6\pm0.5}\ {f 6.1\pm0.7} \end{array}$	11.4 ± 0.4 26.4 ± 0.4 9.8 ± 0.5	15.9 ± 0.7 15.3 ± 0.6 16.0 ± 0.7	2.0 ± 1.3 3.7 ± 1.6 2.0 ± 1.4	38.8 ± 1.4 11.6 ± 1.5 8.3 ± 1.9	4.0 ± 0.4 2.4 ± 0.4 3.0 ± 0.4	8.7 ± 0.3 7.6 \pm 0.2 9.5 ± 0.6	$1.4 \pm 0.$ $3.9 \pm 0.$ $1.2 \pm 0.$

- Evaluation metrics based on 1-Wasserstein distance [1]
- Similar performance between all three CaloClouds versions
- High-level classifier "metric": CaloClouds II better than CaloClouds

High-level fully connected classifier:

	Simulator	AUC		
Э	CALOCLOUDS	0.999 ± 0.001		
	CaloClouds II	0.928 ± 0.001		
	CaloClouds II (CM)	0.923 ± 0.001		
)		[1] <u>R Kansal, et al: Particle Cloud Generation</u>		

with Message Passing Generative **Adversarial Networks**

Sampling Speed-Up (CPU & GPU)

	Hardware Simulator		NFE Batch Size		Time / Shower [ms]	Speed-up	
- (Intel Xe	CPU on CPU E5-2640)	Geant4			3914.80 ± 74.09	×1	
		CaloClouds CaloClouds II CaloClouds II (CM)	$100 \\ 25 \\ 1$	1 1 1	$\begin{array}{c} 3146.71 \pm 31.66 \\ 651.68 \pm 4.21 \\ 84.35 \pm 0.22 \end{array}$	$\times 1.2$ $\times 6.0$ $\times 46$	
(NVIDI	GPU A A100 40 GB)	CALOCLOUDS CALOCLOUDS II CALOCLOUDS II (CM)	$100 \\ 25 \\ 1$	64 64 64	$\begin{array}{c} 24.91 \pm 0.72 \\ 6.12 \pm 0.13 \\ 2.09 \pm 0.13 \end{array}$	$\begin{array}{c} \times 157 \\ \times 640 \\ \times 1873 \end{array}$	

- Speed-up scales with the number of function evaluations (NFE)
- Largest speed-up for CaloClouds II (CM), even on CPU
- CPUs more widely available than GPUs, cheaper, and current simulation chain optimised on CPUs

11

Summary

- CaloClouds: First model to generate highfidelity calorimeter showers as point clouds with $\mathcal{O}(1,000)$ points
- Clustered Geant4 steps allow for a cellgeometry-independent model
- Continuous-time diffusion allows for 4x fewer diffusion steps than discrete-time diffusion without loss in fidelity
- Distillation into a consistency model allows for lacksquaresingle-shot generation
 - 46x faster generation than Geant4 on CPU
- First consistency model for calorimeter shower generation

EB, S Diefenbacher et al: CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation

EB, F Gaede, et al: CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation

Reverse diffusion process (100 steps)

T diffusion steps

Bonus slides

Erik Buhmann | CaloClouds

Longitudinal and Radial Profile Regions (10 each)

Ultra-high granular grid

Geant4 steps —> **Sensor hits**

Steps clustered in ultra-high grid

Ultra-high hits —> Sensor hits

Shower translation

Same position as training set

Shifted position

