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Calorimeter Showers as Point Clouds
• Generative models for calorimeter showers usually 

applied to fixed geometries, 
i.e. CNNs for 3D images

• Calorimeter showers are very sparse  

(only ~ 4% filled pixels)

• More economically represented as point clouds 

(variable-length, permutation-invariant sets)

• Generation of only non-zero points


• Ability to use clustered Geant4 steps with higher 
granularity than sensor size

• Allows for cell-geometry independent model


• CaloClouds: Fast & accurate generative model for 
calorimeter point clouds with  points𝒪(1,000)
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EM shower as 
3D image 

27,000 pixels 
(~ 1,000 non-zero)

EM shower as 
point cloud 

~ 40,000 points
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Data Processing

• Photon showers (10-90 GeV) in the electromagnetic calorimeter (ECAL) of the 
International Large Detector (ILD) at the International Linear Collider (ILC)


• Point clouds of clustered Geant4 steps: 36x higher granularity than cell hits, 
7x fewer points than full Geant4 steps

• Multiple points per cell & geometry independent 
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in up to 40,000 Geant4 steps per shower. Usually, all Geant4 steps in the area of
one calorimeter cell are summed up and a resulting calorimeter hit with the summed
up energy deposition is stored. These calorimeter hits can then be directly compared
to hits measured in actual experiments, as the step information is only a byproduct of
the simulation and is not available in reality.

Ideally, to save computing time for the full Geant4 simulation, a generative model
should create hits at the cell level. This is also what other generative machine learning
models for fast calorimeter simulations do, i.e. the BIB-AE discussed in Chapter 6. Yet,
the generation of discrete cell hits as a point cloud is difficult, as small mismodelings
like overlapping points can heavily impact the quality of the generated data in various
observables, such as changing the total number of hits Nhits.

Instead, one could train a generative model that emulates simulated Geant4

steps. This also adds the above-discussed advantage of making the generative model
cell geometry independent, allowing for a projection of the shower anywhere in the
calorimeter without adding reconstruction artifacts. However, this would result in a
much more granular point cloud with up to 40,000 steps per cloud (at 90 GeV), which
would be prohibitively expensive and difficult to compute.

Therefore, we chose here a middle ground between all Geant4 steps and simple
cell hits. We cluster the Geant4 steps within an ultra-high granular grid with 36⇥
higher granularity than the real simulated cell sizes, using a square grid with sizes of
0.83 ⇥ 0.83 mm (and as thickness the cell thickness of 0.525 mm). All Geant4 steps
within one ultra-high granular cell are summed up and we denote these as clustered steps.
The size of the ultra-high granular grid was tuned such that this results in a point cloud
with up to 6,000 clustered steps at 90 GeV — a size which is computationally feasible
to allow for a fast generative model, yet keeps the advantages of the full Geant4 steps.
An overview of the different point cloud sizes is given in Table 7.1.

Table 7.1: Overview of the three different types of point clouds, either on Geant4
step-level, on clustered step-level (“points”), or on cell-level (“hits”). The number of points
per shower (second column) indicates the maximum at 90 GeV. Table adapted from
Reference [30].

points / shower Note

All Geant4 steps 40 000 Initial output of Geant4

Clustered Geant4 steps 6 000 Input/output of CaloClouds

Hits in calorimeter grid 1 500 Calculation of physics observables

Data Processing

We define a second local coordinate system [X,Y, Z] near the impact point of the
photon showers into the ECAL. Here, X and Y points parallel to the calorimeter layers,
while z is directed perpendicular to the layers along the trajectory of the incident
particle. Since no Geant4 steps are recorded outside the silicon layers, this results
in discrete z positions with various gap sizes. For a generative model, continuous
distributions are easier to learn than discrete ones, therefore, these gaps in the z
direction are removed. Further, the z coordinate is smeared within the size of one layer,
to achieve a continuous z distribution between layers 0 and 30.

International 
Large  

Detector  
(ILD)
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CaloClouds Model
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Diffusion Architecture 
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Reverse diffusion process (100 steps)

• Weight sharing across all points

• Each point independently sampled


• No interaction between points  very fast sampling→

[x,y,z,E]

https://arxiv.org/abs/2103.01458
https://arxiv.org/abs/2103.01458
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CaloClouds & CaloClouds II
• CaloClouds diffusion model based on discrete-time Denoising 

Diffusion Probabilistic Models (DDPM) [1]

‣ Number of diffusion steps: training = sampling


‣ Here: 100 denoising steps

• CaloClouds II diffusion model based on a continuous-time 

diffusion model [2]

‣ Allows for a variety of stochastic and ordinary differential 

equation solvers (ODE / SDE solvers)

‣ Fewer & variable number of steps during sampling


‣ Here: Heun ODE solver with 25 model evaluations

‣ Allows for distillation into a consistency model [3]


‣ Here: Consistency model for single-shot generation

• CaloClouds II: No latent space (no encoder & latent flow)
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Consistency Models

• Consistency Models trainable standalone  
or distilled from a diffusion model


• Allow for single-step & multi-step generation
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Abstract

Diffusion models have significantly advanced the
fields of image, audio, and video generation, but
they depend on an iterative sampling process that
causes slow generation. To overcome this limita-
tion, we propose consistency models, a new fam-
ily of models that generate high quality samples
by directly mapping noise to data. They support
fast one-step generation by design, while still al-
lowing multistep sampling to trade compute for
sample quality. They also support zero-shot data
editing, such as image inpainting, colorization,
and super-resolution, without requiring explicit
training on these tasks. Consistency models can
be trained either by distilling pre-trained diffu-
sion models, or as standalone generative models
altogether. Through extensive experiments, we
demonstrate that they outperform existing distilla-
tion techniques for diffusion models in one- and
few-step sampling, achieving the new state-of-
the-art FID of 3.55 on CIFAR-10 and 6.20 on
ImageNet 64 ˆ 64 for one-step generation. When
trained in isolation, consistency models become a
new family of generative models that can outper-
form existing one-step, non-adversarial generative
models on standard benchmarks such as CIFAR-
10, ImageNet 64 ˆ 64 and LSUN 256 ˆ 256.

1. Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Song & Er-
mon, 2019; 2020; Ho et al., 2020; Song et al., 2021), also
known as score-based generative models, have achieved
unprecedented success across multiple fields, including im-
age generation (Dhariwal & Nichol, 2021; Nichol et al.,
2021; Ramesh et al., 2022; Saharia et al., 2022; Rombach
et al., 2022), audio synthesis (Kong et al., 2020; Chen et al.,
2021; Popov et al., 2021), and video generation (Ho et al.,

1OpenAI, San Francisco, CA 94110, USA. Correspondence to:
Yang Song <songyang@openai.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1: Given a Probability Flow (PF) ODE that smoothly
converts data to noise, we learn to map any point (e.g., xt,
xt1 , and xT ) on the ODE trajectory to its origin (e.g., x0)
for generative modeling. Models of these mappings are
called consistency models, as their outputs are trained to be
consistent for points on the same trajectory.

2022b;a). A key feature of diffusion models is the iterative
sampling process which progressively removes noise from
random initial vectors. This iterative process provides a
flexible trade-off of compute and sample quality, as using
extra compute for more iterations usually yields samples
of better quality. It is also the crux of many zero-shot data
editing capabilities of diffusion models, enabling them to
solve challenging inverse problems ranging from image
inpainting, colorization, stroke-guided image editing, to
Computed Tomography and Magnetic Resonance Imaging
(Song & Ermon, 2019; Song et al., 2021; 2022; 2023; Kawar
et al., 2021; 2022; Chung et al., 2023; Meng et al., 2021).
However, compared to single-step generative models like
GANs (Goodfellow et al., 2014), VAEs (Kingma & Welling,
2014; Rezende et al., 2014), or normalizing flows (Dinh
et al., 2015; 2017; Kingma & Dhariwal, 2018), the iterative
generation procedure of diffusion models typically requires
10–2000 times more compute for sample generation (Song
& Ermon, 2020; Ho et al., 2020; Song et al., 2021; Zhang
& Chen, 2022; Lu et al., 2022), causing slow inference and
limited real-time applications.

Our objective is to create generative models that facilitate ef-
ficient, single-step generation without sacrificing important
advantages of iterative sampling, such as trading compute
for sample quality when necessary, as well as performing
zero-shot data editing tasks. As illustrated in Fig. 1, we
build on top of the probability flow (PF) ordinary differen-
tial equation (ODE) in continuous-time diffusion models
(Song et al., 2021), whose trajectories smoothly transition
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Consistency Models

Figure 2: Consistency models are trained to map points on
any trajectory of the PF ODE to the trajectory’s origin.

Diffusion models are bottlenecked by their slow sampling
speed. Clearly, using ODE solvers for sampling requires
iterative evaluations of the score model s�px, tq, which is
computationally costly. Existing methods for fast sampling
include faster numerical ODE solvers (Song et al., 2020;
Zhang & Chen, 2022; Lu et al., 2022; Dockhorn et al., 2022),
and distillation techniques (Luhman & Luhman, 2021; Sali-
mans & Ho, 2022; Meng et al., 2022; Zheng et al., 2022).
However, ODE solvers still need more than 10 evaluation
steps to generate competitive samples. Most distillation
methods like Luhman & Luhman (2021) and Zheng et al.
(2022) rely on collecting a large dataset of samples from
the diffusion model prior to distillation, which itself is com-
putationally expensive. To our best knowledge, the only
distillation approach that does not suffer from this drawback
is progressive distillation (PD, Salimans & Ho (2022)), with
which we compare consistency models extensively in our
experiments.

3. Consistency Models

We propose consistency models, a new type of models that
support single-step generation at the core of its design, while
still allowing iterative generation for trade-offs between sam-
ple quality and compute, and zero-shot data editing. Consis-
tency models can be trained in either the distillation mode or
the isolation mode. In the former case, consistency models
distill the knowledge of pre-trained diffusion models into a
single-step sampler, significantly improving other distilla-
tion approaches in sample quality, while allowing zero-shot
image editing applications. In the latter case, consistency
models are trained in isolation, with no dependence on pre-
trained diffusion models. This makes them an independent
new class of generative models.

Below we introduce the definition, parameterization, and
sampling of consistency models, plus a brief discussion on
their applications to zero-shot data editing.

Definition Given a solution trajectory txtutPr✏,T s of the
PF ODE in Eq. (2), we define the consistency function as
f : pxt, tq fiÑ x✏. A consistency function has the property

of self-consistency: its outputs are consistent for arbitrary
pairs of pxt, tq that belong to the same PF ODE trajectory,
i.e., fpxt, tq “ fpxt1 , t1q for all t, t1 P r✏, T s. As illustrated
in Fig. 2, the goal of a consistency model, symbolized as
f✓, is to estimate this consistency function f from data by
learning to enforce the self-consistency property (details
in Sections 4 and 5). Note that a similar definition is used
for neural flows (Biloš et al., 2021) in the context of neural
ODEs (Chen et al., 2018). Compared to neural flows, how-
ever, we do not enforce consistency models to be invertible.

Parameterization For any consistency function fp¨, ¨q, we
have fpx✏, ✏q “ x✏, i.e., fp¨, ✏q is an identity function. We
call this constraint the boundary condition. All consistency
models have to meet this boundary condition, as it plays a
crucial role in the successful training of consistency models.
This boundary condition is also the most confining archi-
tectural constraint on consistency models. For consistency
models based on deep neural networks, we discuss two
ways to implement this boundary condition almost for free.
Suppose we have a free-form deep neural network F✓px, tq
whose output has the same dimensionality as x. The first
way is to simply parameterize the consistency model as

f✓px, tq “
#
x t “ ✏

F✓px, tq t P p✏, T s . (4)

The second method is to parameterize the consistency model
using skip connections, that is,

f✓px, tq “ cskipptqx ` coutptqF✓px, tq, (5)

where cskipptq and coutptq are differentiable functions
such that cskipp✏q “ 1, and coutp✏q “ 0. This way,
the consistency model is differentiable at t “ ✏ if
F✓px, tq, cskipptq, coutptq are all differentiable, which is criti-
cal for training continuous-time consistency models (Appen-
dices B.1 and B.2). The parameterization in Eq. (5) bears
strong resemblance to many successful diffusion models
(Karras et al., 2022; Balaji et al., 2022), making it easier to
borrow powerful diffusion model architectures for construct-
ing consistency models. We therefore follow the second
parameterization in all experiments.

Sampling With a well-trained consistency model f✓p¨, ¨q,
we can generate samples by sampling from the initial dis-
tribution x̂T „ N p0, T 2

Iq and then evaluating the consis-
tency model for x̂✏ “ f✓px̂T , T q. This involves only one
forward pass through the consistency model and therefore
generates samples in a single step. Importantly, one can
also evaluate the consistency model multiple times by al-
ternating denoising and noise injection steps for improved
sample quality. Summarized in Algorithm 1, this multistep
sampling procedure provides the flexibility to trade com-
pute for sample quality. It also has important applications
in zero-shot data editing. In practice, we find time points

3

Student model: updated via gradient descent  
Target model: updated via weight average

https://arxiv.org/abs/2303.01469
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Results: 10-90 GeV Photons
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• All evaluations with point cloud showers projected to regular cell geometry

• Hit energy spectrum, radial energy profile, and longitudinal energy profile well 

modeled by all three CaloClouds variants (40,000 showers each)

• CaloClouds II models improve the radial energy profile
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Results: Single Incident Energies

• Total visible energy & number of cell hits for single incident energies well modelled by all 
three CaloClouds variants (2,000 showers each)


• Number of hits better modeled by the CaloClouds II variants

• Expecting further improvements with wider energy range during training
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Results: Metrics & Classifier

• Evaluation metrics based on  
1-Wasserstein distance [1]


• Similar performance between all three 
CaloClouds versions


• High-level classifier “metric”: 
CaloClouds II better than CaloClouds
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Figure 7.8: Visible energy sum (left) and the number of cell hits (right) distributions,
for single energy showers at 10, 50, and 90 GeV. For each energy and model, 2,000 showers
are shown. Figures taken from [31].

polynomial fit used in the number of points scaling. The fit does not perform well on
the edges of the energy range. Were the energy range expanded, we would expect a
higher fidelity for the 10 and 90 GeV photon showers.

In summary, the physics performance of all three CaloClouds variants is good.
In particular, for the radial distribution, it is visible that the CaloClouds II models
are slightly better than CaloClouds, yet their main advantage lies in their improved
computational efficiency.

Evaluation Scores

Table 7.2: Evaluation of the three CaloClouds variants in comparison to Geant4
using 1-Wasserstein distance-based scores for various standardized shower and cell-level
observables. The values are the mean and standard deviation of 10 calculated scores
comparing 50k Geant4 and 50k generated showers each. Table taken from Reference [31].

Simulator WNhits
1 WEvis/Einc

1 WEcell
1 W

Elong

1 WEradial
1 W

m1,X

1 W
m1,Y

1 W
m1,Z

1
(⇥10�3) (⇥10�3) (⇥10�3) (⇥10�3) (⇥10�3) (⇥10�3) (⇥10�3) (⇥10�3)

Geant4 0.7 ± 0.2 0.8 ± 0.2 0.9 ± 0.4 0.7 ± 0.8 0.7 ± 0.1 0.9 ± 0.1 1.1 ± 0.3 0.9 ± 0.3

CaloClouds 2.5 ± 0.3 11.4 ± 0.4 15.9 ± 0.7 2.0 ± 1.3 38.8 ± 1.4 4.0 ± 0.4 8.7 ± 0.3 1.4 ± 0.5
CaloClouds II 3.6 ± 0.5 26.4 ± 0.4 15.3 ± 0.6 3.7 ± 1.6 11.6 ± 1.5 2.4 ± 0.4 7.6 ± 0.2 3.9 ± 0.4
CaloClouds II (CM) 6.1 ± 0.7 9.8 ± 0.5 16.0 ± 0.7 2.0 ± 1.4 8.3 ± 1.9 3.0 ± 0.4 9.5 ± 0.6 1.2 ± 0.5

To gain a more precise understanding of the generative fidelity of the three models
compared to Geant4, we calculate multiple evaluation scores based on the distributions
shown in Section 7.4. In line with publications such as References [62,72,73], we use the
1-Wasserstein distance W1 to compare 1-dimensional distributions. The advantage of
the Wasserstein distance is, that it is trivial to calculate for 1-dimensional distributions
and it is an unbinned estimator, so no parameter choices have to be made in the
distance calculation. A disadvantage is, that it does not always align well with results
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gained from density-based measures, such as the Kullback-Leibler divergence or the
visual inspection of histograms, and it is prone to outliers. Therefore, these scores can
give a good indication of a well-performing model, but should always be considered in
conjunction with evaluation methods such as histograms.

For these distributions, we consider the number of cell hits Nhits, the sampling
fraction Evis/Einc, the cell energy Ecell, the center of gravity in X-, Y -, and Z-direction
m1,↵2{X,Y,Z} as well as ten longitudinal and radial energy observables, Elong,i2[1,10]
and Eradial,i2[1,10], based on the longitudinal and radial shower profiles in Figure 7.6.
These ten longitudinal (radial) observables are calculated with the energy depositions
clustered together in ten equiprobable bins of consecutive layers (concentric regions),
i.e. the bin edges (layer-wise or radial) of each observable is determined such that each
observable is calculated with the same statistics. The energy observables and their bin
edges can be found in Appendix B.

A total of 500,000 photon showers were generated with the generative models as well
as with Geant4 using a uniformly distributed incident energy between 10 and 90 GeV.
The Wasserstein scores were each ten times calculated using batches of 50,000 showers.
The Geant4 scores were calculated the same way, using not-overlapping batches of
Geant4 vs. Geant4. For the WEcell

1 score, only the first 50,000 cell hits were used,
since using all hits from all 50,000 showers would be computationally infeasible. For
the radial and longitudinal observables, we quote the mean value of the respective set
of observables, Eradial and Elong. To achieve overall comparable scores, each observable
is standardized, i.e. their mean and standard deviation are shifted to zero and one.
Tabel 7.2 shows the resulting scores with mean and standard deviation over the ten
batches.

The scores paint a very similar picture to the histograms shown in Section 7.4,
namely all models perform similarly, yet all deviate from the Geant4 truth. The
largest difference between the models is observable for the WEradial

1 score, there the
CaloClouds II (CM) model performs best and the CaloClouds model quite a bit
worse than both CaloClouds II and CaloClouds II (CM). This is in line with
what can be seen in Figure 7.6 (center) as well as in the individual radial observables
shown in Figure B.1 of Appendix B. Overall, all three models produce high-fidelity
photon showers almost matching the Geant4 baseline, tho further research is needed
to exactly match it.

Classifier Scores

Table 7.3: Comparison of the CaloClouds model performance to Geant4 with the
area under the receiver operating characteristic curve (AUC) score. The AUC score was
calculated using a high-level binary classifier with shower observables as input trained to
separate Geant4 from CaloClouds generated showers. The values presented are the
mean and standard deviation of ten AUC scores with each of the ten classifiers trained and
evaluated with a different (not overlapping) dataset split. Table taken from Reference [31].

Simulator AUC

CaloClouds 0.999 ± 0.001
CaloClouds II 0.928 ± 0.001
CaloClouds II (CM) 0.923 ± 0.001

High-level fully connected classifier:

[1] R Kansal, et al: Particle Cloud Generation 
with Message Passing Generative 
Adversarial Networks

https://arxiv.org/abs/2106.11535v3
https://arxiv.org/abs/2106.11535v3
https://arxiv.org/abs/2106.11535v3
https://arxiv.org/abs/2106.11535v3
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Sampling Speed-Up (CPU & GPU)

11
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Table 7.4: Comparison of the computational performance of CaloClouds, Calo-
Clouds II, and CaloClouds II (CM) to the baseline Geant4 simulator on a single
core of an IntelR� XeonR� CPU E5-2640 v4 (CPU) and on an NVIDIAR� A100 with 40 GB
of memory (GPU). Per run 2,000 showers were generated with incident energy uniformly
distributed between 10 and 90 GeV. Values presented are the means and standard devia-
tions over 10 runs. The number of function evaluations (NFE) indicate the number of
diffusion model passes. Table taken from Reference [31].

Hardware Simulator NFE Batch Size Time / Shower [ms] Speed-up

CPU Geant4 3914.80 ± 74.09 ⇥1

CaloClouds 100 1 3146.71 ± 31.66 ⇥1.2
CaloClouds II 25 1 651.68 ± 4.21 ⇥6.0
CaloClouds II (CM) 1 1 84.35 ± 0.22 ⇥46

GPU CaloClouds 100 64 24.91 ± 0.72 ⇥157
CaloClouds II 25 64 6.12 ± 0.13 ⇥640
CaloClouds II (CM) 1 64 2.09 ± 0.13 ⇥1873

expensive than CPUs and not widely available. Hence, a more fair comparison between
Geant4 and the CaloClouds models can be drawn when sampling on a single CPU.

In Tabel 7.4 we provide the average generation time for generating a single shower5.
We quote the mean time of 10 runs, each generating 2,000 showers with a uniform
energy distribution between 10 and 90 GeV. Note, that just like Geant4 and unlike
the fixed grid- / image-based generative models, the generation speed of the point
cloud-based CaloClouds models scales with the number of points generated and
therefore also with the incident energy. We additionally provide in the table the number
of function evaluations in each model, as this constitutes the source of the large speed
improvements of the CaloClouds II models over the CaloClouds model. The
batch sizes on GPU are optimized for computational performance and are set to 64 for
all three models.

On CPU, the CaloClouds model achieves a speed-up of 1.2⇥ over Geant4,
CaloClouds II achieves a speed-up of 6.0⇥, and CaloClouds II (CM) achieves a
speed-up of 46⇥, which is even about 5⇥ faster than the BIB-AE model introduced
in Chapter 6. For reference, this large of a speed-up means, that using the Calo-

Clouds II (CM) model one can generate within a day as many showers as with
Geant4 in 1.5 months. On GPU these speed-ups are naturally even larger and a
speed-up of up to 1873⇥ can be achieved using CaloClouds II (CM).

The training of the CaloClouds model on a NVIDIAR� A100 GPU took about
80 hours and the training of the CaloClouds II model took around 50 hours on
the same GPU. The consecutive distillation of CaloClouds II (CM) took about
100 hours. This distillation is fast compared to other distillation methods such as
progressive distillation, for which multiple models have to be trained, each with half as
many denoising steps as the previous.

Overall, the CaloClouds model yields already a large speed-up for generat-
ing photon showers using a GPU, while CaloClouds II and particularly Calo-

5The Geant4 benchmark was performed by Anatolii Korol.

• Speed-up scales with the number of function evaluations (NFE)

• Largest speed-up for CaloClouds II (CM), even on CPU

• CPUs more widely available than GPUs, cheaper, and current simulation 

chain optimised on CPUs 

!

(NVIDIA A100 40 GB)

(Intel Xeon CPU E5-2640)
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Summary
• CaloClouds: First model to generate high-

fidelity calorimeter showers as point clouds 
with  points


• Clustered Geant4 steps allow for a cell-
geometry-independent model


• Continuous-time diffusion allows for 4x fewer 
diffusion steps than discrete-time diffusion 
without loss in fidelity


• Distillation into a consistency model allows for 
single-shot generation

• 46x faster generation than Geant4 on CPU


• First consistency model for calorimeter shower 
generation

𝒪(1,000)
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EB, S Diefenbacher et al:  
CaloClouds: Fast Geometry-Independent 
Highly-Granular Calorimeter Simulation

EB, F Gaede, et al:  
CaloClouds II: Ultra-Fast Geometry-Independent 
Highly-Granular Calorimeter Simulation
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Bonus slides
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Longitudinal and Radial Profile Regions (10 each)
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Ultra-high granular grid

15

0 20 40

X [mm]

60

70

80

90

100

Y
[m

m
]

detector geometry

0 20 40

X [mm]

60

70

80

90

100

Y
[m

m
]

detector geometry

0 20 40

X [mm]

60

70

80

90

100

Y
[m

m
]

ulra-high granular grid

Geant4 steps —> Sensor hits Steps clustered in ultra-high grid Ultra-high hits —> Sensor hits



Nov. 7th, 2023 Erik Buhmann    |    CaloClouds

Shower translation
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