
Level up your performance
calculation

of the fast shower simulation model

Anna Zaborowska

CERN

ML4Jets2023

This work benefited from support by the CERN Strategic R&D Programme on Technologies for
Future Experiments (CERN-OPEN-2018-006)

https://cds.cern.ch/record/2649646/

Why to use parameterisation / fast(er) simulation?

To speed-up simulation
in order to generate
more data within same
CPU time:

• to fit within available
computing resources;

• to provide sufficient
amount of simulation
data for comparison
with the
experimental data;

2021 2023 2025 2027 2029 2031 2033 2035 2037
Year

0

10000

20000

30000

40000

50000

To
ta

l C
PU

[k
HS

06
-y

ea
rs

] CMSPublic
Total CPU

2022 Estimates

Run 3 Run 4 Run 5

No R&D improvements
Weighted probable scenario
10 to 20% annual resource increase

CMS

CERN-CMS-NOTE-2022-008

1/12

https://twiki.cern.ch/twiki/pub/CMSPublic/CMSOfflineComputingResults/cpu_cms2022.pdf

Why to use parameterisation / fast(er) simulation?

To speed-up simulation
in order to generate
more data within same
CPU time:

• to fit within available
computing resources;

• to provide sufficient
amount of simulation
data for comparison
with the
experimental data;

2021 2023 2025 2027 2029 2031 2033 2035 2037
Year

0

10000

20000

30000

40000

50000

To
ta

l C
PU

[k
HS

06
-y

ea
rs

] CMSPublic
Total CPU

2022 Estimates

Run 3 Run 4 Run 5

No R&D improvements
Weighted probable scenario
10 to 20% annual resource increase

CMS

CERN-CMS-NOTE-2022-008

CERN-LHCC-2022-005

1/12

https://twiki.cern.ch/twiki/pub/CMSPublic/CMSOfflineComputingResults/cpu_cms2022.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/fig_01.png

Why to use parameterisation / fast(er) simulation?

To speed-up simulation
in order to generate
more data within same
CPU time:

• to fit within available
computing resources;

• to provide sufficient
amount of simulation
data for comparison
with the
experimental data;

2021 2023 2025 2027 2029 2031 2033 2035 2037
Year

0

10000

20000

30000

40000

50000

To
ta

l C
PU

[k
HS

06
-y

ea
rs

] CMSPublic
Total CPU

2022 Estimates

Run 3 Run 4 Run 5

No R&D improvements
Weighted probable scenario
10 to 20% annual resource increase

CMS

CERN-CMS-NOTE-2022-008

CERN-LHCC-2022-005

2021 2022 2023 2024 2025
Year

0

1000

2000

3000

4000

5000

C
PU

 [k
H

S0
6]

LHCb PreliminaryStripping
User
MC:100% Detailed Simulation
Pledge
WLCG
HLT
Opportunistic
Baseline
Aggressive Fast Simulation Model

LHCb-FIGURE-2019-018

LHCb-TALK-2018-349

1/12

https://twiki.cern.ch/twiki/pub/CMSPublic/CMSOfflineComputingResults/cpu_cms2022.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/fig_01.png
https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2019-018.html
https://cds.cern.ch/record/2631791/

Fast simulation in the experiments

While for full simulation is a standard toolkit,

fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment.

−→ CMS and LHCb use fast simulation hooks offered by Geant4
−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Fast simulation in the experiments

While for full simulation is a standard toolkit, fast simulation is
typically implemented outside, in the custom software frameworks of each
experiment. −→ CMS and LHCb use fast simulation hooks offered by Geant4

−→ ATLAS is investigating a move from custom framework to Geant4

−→ Easy to include in any existing G4 application

Use of cell-level data implies experiment-specific models, not every experiment can
afford that, but it is probably the fastest (can they offer sufficient accuracy?).

Use of granular voxelization and point clouds can be transferable, and is easier if
fast simulation is performed fully inside Geant4, from taking over particle
transportation, via inference, and deposition of generated showers.−→ reuse of tools.

−→ LHCb already has an implementation of a Par04 (=CaloChallenge d2&3) setup

True performance measurements possible once ML model is in
production software. (see talk by M.Giannelli at CaloChallenge workshop)

... in the meantime...

2/12

https://indico.cern.ch/event/1192075/contributions/5016264/attachments/2510523/4314926/2022-09-19-SFT-meets-ADP.pdf#page=17
https://indico.cern.ch/event/1327487/contributions/5586669/attachments/2725034/4735616/calo_challenge_in_gaussino_v1\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {p\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font) }\let \protect \immediate\write \m@ne {LaTeX Font Info: on input line 48.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 95 p\egroup \spacefactor \accent@spacefactor df
https://agenda.infn.it/event/34036/contributions/200887/

Performance of the model (beyond physics validation)

In common: all those exporiments use C++ based frameworks, so inference must
be implemented in C++, taking into account how events are processed.

−→ batching

Time-wise (CPU and/or GPU):

Inference in C++ placement of generated deposits

OnnxRuntime
PYTORCH C++ API
TensorFlow C++ API

...

energy of (centre-of) voxels
multiple energies per voxel

energy of points

3/12

Performance of the model (beyond physics validation)

In common: all those exporiments use C++ based frameworks, so inference must
be implemented in C++, taking into account how events are processed. −→ batching

Time-wise (CPU and/or GPU):

Inference in C++ placement of generated deposits

OnnxRuntime
PYTORCH C++ API
TensorFlow C++ API

...

energy of (centre-of) voxels
multiple energies per voxel

energy of points

3/12

Performance of the model (beyond physics validation)

In common: all those exporiments use C++ based frameworks, so inference must
be implemented in C++, taking into account how events are processed. −→ batching

Time-wise (CPU and/or GPU):

Inference in C++ placement of generated deposits

OnnxRuntime
PYTORCH C++ API
TensorFlow C++ API

...

energy of (centre-of) voxels
multiple energies per voxel

energy of points

3/12

Performance of the model (beyond physics validation)

In common: all those exporiments use C++ based frameworks, so inference must
be implemented in C++, taking into account how events are processed. −→ batching

Time-wise (CPU and/or GPU):

Inference in C++ placement of generated deposits

OnnxRuntime
PYTORCH C++ API
TensorFlow C++ API

...

energy of (centre-of) voxels
multiple energies per voxel

energy of points

Memory-wise:

the larger the models
the larger the number of models ⇒ the larger memory usage
(per particle type, per region)

3/12

Performance of the model (beyond physics validation)

In common: all those exporiments use C++ based frameworks, so inference must
be implemented in C++, taking into account how events are processed. −→ batching

Time-wise (CPU and/or GPU):

Inference in C++ placement of generated deposits

OnnxRuntime
PYTORCH C++ API
TensorFlow C++ API

...

energy of (centre-of) voxels
multiple energies per voxel

energy of points

Memory-wise:

the larger the models
the larger the number of models ⇒ the larger memory usage
(per particle type, per region)

3/12

Performance of the model (beyond physics validation)

In common: all those exporiments use C++ based frameworks, so inference must
be implemented in C++, taking into account how events are processed. −→ batching

Time-wise (CPU and/or GPU):

Inference in C++ placement of generated deposits

OnnxRuntime
PYTORCH C++ API
TensorFlow C++ API

...

energy of (centre-of) voxels
multiple energies per voxel

energy of points

Memory-wise:

the larger the models
the larger the number of models ⇒ the larger memory usage
(per particle type, per region)

3/12

Performance of the model (beyond physics validation)

In common: all those exporiments use C++ based frameworks, so inference must
be implemented in C++, taking into account how events are processed. −→ batching

Time-wise (CPU and/or GPU):

Inference in C++ placement of generated deposits

OnnxRuntime
PYTORCH C++ API
TensorFlow C++ API

...

energy of (centre-of) voxels
multiple energies per voxel

energy of points

Memory-wise:

the larger the models
the larger the number of models ⇒ the larger memory usage
(per particle type, per region)

3/12

Detector setup

Presented data comes from the Par04 example of
.

Simple cylinders of active (Si) and passive (W)
materials.

New: introduced (physical) cells, with the total
number in the detector: either 300k or 3M.

The total voxelisation of showers is 6.5k (like
CaloChallenge dataset2) or 40k (like dataset3)
and created around the shower center.

Voxelisation is used first to produce training data,
and then generated showers at those (voxels’)
positions must be placed at/mapped to the cells.
−→ No matter if voxels or point clouds are used: it’s their

number in generated shower that counts.

dataset2:
R × P × N = 9 × 16 × 45
dataset3:
R × P × N = 18 × 50 × 45

la
ye
r

slice

row
cell of virtual readout
in which particle
deposited energy

cell of physical readout
in which particle
deposited energy

detector cells vs
shower voxels

4/12

Detector setup

Presented data comes from the Par04 example of
.

Simple cylinders of active (Si) and passive (W)
materials.

New: introduced (physical) cells, with the total
number in the detector: either 300k or 3M.

The total voxelisation of showers is 6.5k (like
CaloChallenge dataset2) or 40k (like dataset3)
and created around the shower center.

Voxelisation is used first to produce training data,
and then generated showers at those (voxels’)
positions must be placed at/mapped to the cells.
−→ No matter if voxels or point clouds are used: it’s their

number in generated shower that counts.

dataset2:
R × P × N = 9 × 16 × 45
dataset3:
R × P × N = 18 × 50 × 45

la
ye
r

slice

row
cell of virtual readout
in which particle
deposited energy

cell of physical readout
in which particle
deposited energy

detector cells vs
shower voxels

4/12

Disclaimer

Caution: Those results apply to this particular example
(which is the origin of the CaloChallenge datasets 2&3).

Par04 example of Geant4:

300k readout granularity: gitlab.cern.ch/fastsim/par04/-/tree/v11.1 lowgran

3M readout granularity: gitlab.cern.ch/fastsim/par04/-/tree/v11.1 highgran

CaloChallenge dataset 3 is the default, dataset 2 obtained by changing the input
macro parameters.

There is no model, no calculation (ML or parameterisation). Results represent the
‘extra’ cost of high granularity.

All data points are an average over 10 runs, from 1000 shower samples per particle
energy.

5/12

https://gitlab.cern.ch/fastsim/par04/-/tree/v11.1_lowgran?ref_type=tags
https://gitlab.cern.ch/fastsim/par04/-/tree/v11.1_highgran?ref_type=tags
https://gitlab.cern.ch/fastsim/par04/-/blob/v11.1_highgran/examplePar04.mac?ref_type=tags#L11
https://gitlab.cern.ch/fastsim/par04/-/blob/v11.1_highgran/examplePar04.mac?ref_type=tags#L11

Disclaimer

Caution: Those results apply to this particular example
(which is the origin of the CaloChallenge datasets 2&3).

Par04 example of Geant4:

300k readout granularity: gitlab.cern.ch/fastsim/par04/-/tree/v11.1 lowgran

3M readout granularity: gitlab.cern.ch/fastsim/par04/-/tree/v11.1 highgran

CaloChallenge dataset 3 is the default, dataset 2 obtained by changing the input
macro parameters.

There is no model, no calculation (ML or parameterisation). Results represent the
‘extra’ cost of high granularity.

All data points are an average over 10 runs, from 1000 shower samples per particle
energy.

5/12

https://gitlab.cern.ch/fastsim/par04/-/tree/v11.1_lowgran?ref_type=tags
https://gitlab.cern.ch/fastsim/par04/-/tree/v11.1_highgran?ref_type=tags
https://gitlab.cern.ch/fastsim/par04/-/blob/v11.1_highgran/examplePar04.mac?ref_type=tags#L11
https://gitlab.cern.ch/fastsim/par04/-/blob/v11.1_highgran/examplePar04.mac?ref_type=tags#L11

Disclaimer

Caution: Those results apply to this particular example
(which is the origin of the CaloChallenge datasets 2&3).

Par04 example of Geant4:

300k readout granularity: gitlab.cern.ch/fastsim/par04/-/tree/v11.1 lowgran

3M readout granularity: gitlab.cern.ch/fastsim/par04/-/tree/v11.1 highgran

CaloChallenge dataset 3 is the default, dataset 2 obtained by changing the input
macro parameters.

There is no model, no calculation (ML or parameterisation). Results represent the
‘extra’ cost of high granularity.

All data points are an average over 10 runs, from 1000 shower samples per particle
energy.

5/12

https://gitlab.cern.ch/fastsim/par04/-/tree/v11.1_lowgran?ref_type=tags
https://gitlab.cern.ch/fastsim/par04/-/tree/v11.1_highgran?ref_type=tags
https://gitlab.cern.ch/fastsim/par04/-/blob/v11.1_highgran/examplePar04.mac?ref_type=tags#L11
https://gitlab.cern.ch/fastsim/par04/-/blob/v11.1_highgran/examplePar04.mac?ref_type=tags#L11

Time performance
E (GeV) 1 10 100 500 1000
full sim (300k) 0.097 0.93 9.0 42.9 82.3
full sim (3M) 0.089 0.86 8.0 40.0 76.0
event overhead (300k) 0.00012 0.00012 0.00012 0.00013 0.00013
event overhead (3M) 0.00012 0.00012 0.00013 0.00012 0.00012
fast sim deposits placement (300k, dataset3) 0.00014 0.00077 0.00296 0.00666 0.00923
fast sim deposits placement (3M, dataset3) 0.00015 0.00073 0.00273 0.00609 0.00837
overhead + placement (300k) 0.00026 0.00089 0.00308 0.00679 0.00936
overhead + placement (3M) 0.00027 0.00085 0.00287 0.00621 0.00849

100 101 102 103

10−4

10−3

10−2

10−1

100

101

102

E (GeV)

T
im

e
p
er

sh
ow

er
(s
)

full simulation (300k readout cells)

full simulation (3M readout cells)

any simulation event overhead (300k readout cells)

any simulation event overhead (3M readout cells)

fast sim placement of Nfullsim deposits (300k readout cells)

fast sim placement of Nfullsim deposits (3M readout cells)

overhead + placement of Nfullsim deposits (300k readout cells)

overhead + placement of Nfullsim deposits (3M readout cells)

1

fast simulation time =
= overhead per event + inference + placement of N deposits

speed-up = full simulation
fast simulation

Note: This represents a greatly optimised Par04 simulation.

Overhead comes from data structures
initialisation, clean up, storing output, ...

Number of deposits is taken from the full simulation.

6/12

Speed-up limit E (GeV) 1 10 100 500 1000
speed-up limit for dataset 2 (fit) 358 2143 6061 17146 28108
speed-up limit for dataset 3 (fit) 321 1073 3029 6547 9274

100 101 102 103

103

104

E (GeV)

S
p
ee
d
-u
p
li
m
it
p
er

sh
ow

er

dataset2 (300k readout cells)

dataset2 (3M readout cells)

dataset3 (300k readout cells)

dataset3 (3M readout cells)

1

speed-up limit= full simulation
overhead+placement

Low energy particles are most populous,
so likely the average speed-up per shower is no larger than O (1000).

Which is still a huge gain!

7/12

Speed-up limit E (GeV) 1 10 100 500 1000
speed-up limit for dataset 2 (fit) 358 2143 6061 17146 28108
speed-up limit for dataset 3 (fit) 321 1073 3029 6547 9274

100 101 102 103

103

104

E (GeV)

S
p
ee
d
-u
p
li
m
it
p
er

sh
ow

er

dataset2 (300k readout cells)

dataset2 (3M readout cells)

dataset3 (300k readout cells)

dataset3 (3M readout cells)

1

speed-up limit= full simulation
overhead+placement

Low energy particles are most populous,
so likely the average speed-up per shower is no larger than O (1000).

Which is still a huge gain!
7/12

Time performance estimation (as a function on number of deposits)

102 103 104 105

10−3

10−2

10−1

Number of generated deposits per shower Ndep

T
im

e
p
er

sh
ow

er
(s
)

Ndep from dataset3 (300k readout cells)

Ndep from dataset3 (3M readout cells)

Ndep from dataset2 (300k readout cells)

Ndep from dataset2 (3M readout cells)

fixed Ndep (300k readout cells)

fixed Ndep (3M readout cells)

1

green diamonds correspond to dataset 3,

cyan circles correspond to the dataset 2,

orange circles is an artificial placement of
Ndep.

Fit to data:

t(s) = 5.015e−13N2
dep+5.79e−7Ndep+0.00021

↑ can be applied to any dataset 2 or 3
calculations on top of the inference time.

8/12

Batching

Few notes:

• Batch size for inference has crucial impact on speed-up;

• It is not impossible to batch showers across events, but it requires major work
on experiments’ frameworks, and we are not yet even at batch=1 models in
production (exception: ATLAS).

• Possible batching within a single event can be larger for heavy events (tt) and
smaller for lighter ones (minimum bias).

• To remember: fast simulation may require more models (per particle, per
detector region).

• This exercise give a rough estimate on calculated batch sizes. It is done using
Pythia and looking at particles entering calorimeters.

9/12

Batching

Few notes:

• Batch size for inference has crucial impact on speed-up;

• It is not impossible to batch showers across events, but it requires major work
on experiments’ frameworks, and we are not yet even at batch=1 models in
production (exception: ATLAS).

• Possible batching within a single event can be larger for heavy events (tt) and
smaller for lighter ones (minimum bias).

• To remember: fast simulation may require more models (per particle, per
detector region).

• This exercise give a rough estimate on calculated batch sizes. It is done using
Pythia and looking at particles entering calorimeters.

9/12

Batching

Few notes:

• Batch size for inference has crucial impact on speed-up;

• It is not impossible to batch showers across events, but it requires major work
on experiments’ frameworks, and we are not yet even at batch=1 models in
production (exception: ATLAS).

• Possible batching within a single event can be larger for heavy events (tt) and
smaller for lighter ones (minimum bias).

• To remember: fast simulation may require more models (per particle, per
detector region).

• This exercise give a rough estimate on calculated batch sizes. It is done using
Pythia and looking at particles entering calorimeters.

9/12

Batching

Few notes:

• Batch size for inference has crucial impact on speed-up;

• It is not impossible to batch showers across events, but it requires major work
on experiments’ frameworks, and we are not yet even at batch=1 models in
production (exception: ATLAS).

• Possible batching within a single event can be larger for heavy events (tt) and
smaller for lighter ones (minimum bias).

• To remember: fast simulation may require more models (per particle, per
detector region).

• This exercise give a rough estimate on calculated batch sizes. It is done using
Pythia and looking at particles entering calorimeters.

9/12

Batching

Few notes:

• Batch size for inference has crucial impact on speed-up;

• It is not impossible to batch showers across events, but it requires major work
on experiments’ frameworks, and we are not yet even at batch=1 models in
production (exception: ATLAS).

• Possible batching within a single event can be larger for heavy events (tt) and
smaller for lighter ones (minimum bias).

• To remember: fast simulation may require more models (per particle, per
detector region).

• This exercise give a rough estimate on calculated batch sizes. It is done using
Pythia and looking at particles entering calorimeters.

9/12

Simplistic detector

Few layers of materials (average tracker budget) are placed in front of the
calorimeter.
Particles are counted at the entrance to the calorimeters.
(mean and RMS given for minbias, Gaussian fit for tt)

Simple application used for do this study:
gitlab.cern.ch/fastsim/particle multiplicities

|η| < 1.5 |η| < 3
E>100 MeV E>1 GeV E>10 GeV E>100 MeV E>1 GeV E>10 GeV

tt @ 14 TeV pp
e+/e− 58±22 7.7 ± 6.0 0.6±0.9 311±184 24.9±10.7 1.2±1.5
γ 107±40 17.0 ± 8.9 1.2±1.6 536±432 46.3±16.8 2.2±2.2

π+/π− 83±33 29.6 ± 13.4 0.6±3.7 363±232 104.7±37.1 7.3±4.3

minimum bias @ 14 TeV
e+/e− 11.8±11.7 0.3±0.8 - 108±84 2.7±3.3 -
γ 26.3±22.6 1.2±1.8 - 206±156 7.8±7.5 -

π+/π− 24.5±20.9 3.6±4.5 - 160±118 33.4±27.5 0.3±0.6

tt @ 365 GeV ee
e+/e− 22.7±9.1 4.0±3.0 0.25±0.5 26.2±10.6 4.5±2.9 0.3±0.5
γ 38.4±14.2 8.8±4.0 0.4±0.7 44.6±15.4 9.7±3.9 0.5±0.7

π+/π− 29.9±11.4 14.9±6.0 0.4±1.4 32.4±12.1 16.1±6.1 0.5±1.5

10/12

https://gitlab.cern.ch/fastsim/particle_multiplicities

Simplistic detector

Few layers of materials (average tracker budget) are placed in front of the
calorimeter.
Particles are counted at the entrance to the calorimeters.
(mean and RMS given for minbias, Gaussian fit for tt)

Simple application used for do this study:
gitlab.cern.ch/fastsim/particle multiplicities

|η| < 1.5 |η| < 3
E>100 MeV E>1 GeV E>10 GeV E>100 MeV E>1 GeV E>10 GeV

tt @ 14 TeV pp
e+/e− 58±22 7.7 ± 6.0 0.6±0.9 311±184 24.9±10.7 1.2±1.5
γ 107±40 17.0 ± 8.9 1.2±1.6 536±432 46.3±16.8 2.2±2.2

π+/π− 83±33 29.6 ± 13.4 0.6±3.7 363±232 104.7±37.1 7.3±4.3

minimum bias @ 14 TeV
e+/e− 11.8±11.7 0.3±0.8 - 108±84 2.7±3.3 -
γ 26.3±22.6 1.2±1.8 - 206±156 7.8±7.5 -

π+/π− 24.5±20.9 3.6±4.5 - 160±118 33.4±27.5 0.3±0.6

tt @ 365 GeV ee
e+/e− 22.7±9.1 4.0±3.0 0.25±0.5 26.2±10.6 4.5±2.9 0.3±0.5
γ 38.4±14.2 8.8±4.0 0.4±0.7 44.6±15.4 9.7±3.9 0.5±0.7

π+/π− 29.9±11.4 14.9±6.0 0.4±1.4 32.4±12.1 16.1±6.1 0.5±1.5

10/12

https://gitlab.cern.ch/fastsim/particle_multiplicities

Open Data Detector

See talk from yesteday for more details on ODD.
Particles are counted at the entrance to the calorimeters.
(mean and RMS given for minbias, Gaussian fit for tt)

Analysis application used for do this study: gitlab.cern.ch/fastsim/ddODD

|η| < 1.5 (barrel) |η| < 3 (barrel + endcaps)
E > 100 MeV E > 1 GeV E > 10 GeV E > 100 MeV E > 1 GeV E > 10 GeV

tt @ 14 TeV
e+/e− 64.1±25.6 9.1±6.2 0.6±1.0 86.8±33.2 15.5±7.8 1.1±1.4
γ 113.1±44 19.3±9.2 1.3±1.5 159±68 35±13.6 2.7±2.6

π+/π− 83±31 32.0±13.0 1.6±3.5 119±45 55.7±20.4 4.4±5.9

minbias @ 14 TeV
e+/e− 12.0±11.6 0.4±0.8 - 19.7±18.4 1.6±2.2 -
γ 24.3±21.8 1.3±2.0 - 41.2±35.0 6.0±6.4 -

π+/π− 22.3±19.9 4.0±5.2 - 35.5±30.1 11.8±11.6 0.3±0.7

11/12

https://indico.cern.ch/event/1253794/contributions/5588601/
https://gitlab.cern.ch/fastsim/ddodd

Open Data Detector

See talk from yesteday for more details on ODD.
Particles are counted at the entrance to the calorimeters.
(mean and RMS given for minbias, Gaussian fit for tt)

Analysis application used for do this study: gitlab.cern.ch/fastsim/ddODD

|η| < 1.5 (barrel) |η| < 3 (barrel + endcaps)
E > 100 MeV E > 1 GeV E > 10 GeV E > 100 MeV E > 1 GeV E > 10 GeV

tt @ 14 TeV
e+/e− 64.1±25.6 9.1±6.2 0.6±1.0 86.8±33.2 15.5±7.8 1.1±1.4
γ 113.1±44 19.3±9.2 1.3±1.5 159±68 35±13.6 2.7±2.6

π+/π− 83±31 32.0±13.0 1.6±3.5 119±45 55.7±20.4 4.4±5.9

minbias @ 14 TeV
e+/e− 12.0±11.6 0.4±0.8 - 19.7±18.4 1.6±2.2 -
γ 24.3±21.8 1.3±2.0 - 41.2±35.0 6.0±6.4 -

π+/π− 22.3±19.9 4.0±5.2 - 35.5±30.1 11.8±11.6 0.3±0.7

11/12

https://indico.cern.ch/event/1253794/contributions/5588601/
https://gitlab.cern.ch/fastsim/ddodd

Summary

1. ML models are exciting to develop, but imagine the joy of having your model
actually there inside the experiment, in the production software!

It takes few more steps ...

2. Any speed-up value, a comparison to Geant4 simulation time should take into
account a small event overhead + hit placement time
(0.2–10 ms/shower)

→ otherwise only absolute measurements are fair.

3. So far (per event) realistic batching is no larger than 20 – 40, depending if a
single model can be used for barrel or barrel+endcap region (and it’s for heavy
events). Inference per batch=1 should probably always be measured (useful for
lighter events).

12/12

Summary

1. ML models are exciting to develop, but imagine the joy of having your model
actually there inside the experiment, in the production software!

It takes few more steps ...

2. Any speed-up value, a comparison to Geant4 simulation time should take into
account a small event overhead + hit placement time
(0.2–10 ms/shower)

→ otherwise only absolute measurements are fair.

3. So far (per event) realistic batching is no larger than 20 – 40, depending if a
single model can be used for barrel or barrel+endcap region (and it’s for heavy
events). Inference per batch=1 should probably always be measured (useful for
lighter events).

12/12

Summary

1. ML models are exciting to develop, but imagine the joy of having your model
actually there inside the experiment, in the production software!

It takes few more steps ...

2. Any speed-up value, a comparison to Geant4 simulation time should take into
account a small event overhead + hit placement time
(0.2–10 ms/shower)

→ otherwise only absolute measurements are fair.

3. So far (per event) realistic batching is no larger than 20 – 40, depending if a
single model can be used for barrel or barrel+endcap region (and it’s for heavy
events). Inference per batch=1 should probably always be measured (useful for
lighter events).

12/12

Summary

1. ML models are exciting to develop, but imagine the joy of having your model
actually there inside the experiment, in the production software!

It takes few more steps ...

2. Any speed-up value, a comparison to Geant4 simulation time should take into
account a small event overhead + hit placement time
(0.2–10 ms/shower)→ otherwise only absolute measurements are fair.

3. So far (per event) realistic batching is no larger than 20 – 40, depending if a
single model can be used for barrel or barrel+endcap region (and it’s for heavy
events). Inference per batch=1 should probably always be measured (useful for
lighter events).

12/12

Summary

1. ML models are exciting to develop, but imagine the joy of having your model
actually there inside the experiment, in the production software!

It takes few more steps ...

2. Any speed-up value, a comparison to Geant4 simulation time should take into
account a small event overhead + hit placement time
(0.2–10 ms/shower)→ otherwise only absolute measurements are fair.

3. So far (per event) realistic batching is no larger than 20 – 40, depending if a
single model can be used for barrel or barrel+endcap region (and it’s for heavy
events). Inference per batch=1 should probably always be measured (useful for
lighter events).

12/12

BACKUP

1/4

Size of the input vs shower representation
E (GeV) 1 10 100 1000

Ncells (300k) 50±6 133±11 375±20 1175±51
Ncells (3M) 55±7 197±17 754±34 2796±55

Nvoxels (dataset 2) 111 ±10 623 ± 34 2’198±84 4’712±186
Nvoxels (dataset 3) 166 ± 16 1’140 ±53 4’769 ±162 15’164 ±470

Ndeposits 785±249 7’444±423 74’318±1204 743’009±4267

100 101 102 103

102

103

104

105

106

E (GeV)

In
p
u
t
si
ze

p
er

sh
ow

er

number of cells (300k readout cells)

number of cells (3M readout cells)

number of voxels (dataset 2)∗

number of voxels (dataset 3)∗∗

number of deposits

∗ voxelization with around 0.5 X0×0.5 RM×0.4 rad voxel size

∗∗ voxelization with around 0.5 X0×0.25 RM×0.125 rad voxel size

1

2/4

Particle multipliciies

gg2ttbar @ 14 TeV gg2minbias @ 14 TeV

3/4

Shower data representation: cells, voxels, point clouds, ...

4/4

Shower data representation: cells, voxels, point clouds, ...

1 GeV e−

in Si/W detector

all particles > 1 keV

4/4

Shower data representation: cells, voxels, point clouds, ...

1 GeV e−

in Si/W detector

all particles > 10 keV

4/4

Shower data representation: cells, voxels, point clouds, ...

1 GeV e−

in Si/W detector

all particles > 100 keV

4/4

Shower data representation: cells, voxels, point clouds, ...

1 GeV e−

in Si/W detector

all particles > 1MeV

4/4

Shower data representation: cells, voxels, point clouds, ...

1 GeV e−

in Si/W detector

all particles > 10MeV

4/4

Shower data representation: cells, voxels, point clouds, ...

1 GeV e−

in Si/W detector

e+/e− (no γ) > 1 keV

4/4

Shower data representation: cells, voxels, point clouds, ...

10 GeV e−

in Si/W detector

e+/e− (no γ) > 1 keV

4/4

Temporary page!

LATEX was unable to guess the total number of pages correctly. As there was some
unprocessed data that should have been added to the final page this extra page has
been added to receive it.
If you rerun the document (without altering it) this surplus page will go away,
because LATEX now knows how many pages to expect for this document.

	Appendix

