

#### End-To-End Latent Variational Diffusion Models for Inverse Problems in High Energy Physics

Alexander Shmakov, <u>Kevin Greif</u>, Michael Fenton, Aishik Ghosh, Pierre Baldi, Daniel Whiteson

> November 8 2023 ML4Jets 2023 DESY

# **Unfolding At The LHC**

- Every cross section measurement subject to detector effects
- Process of removing detector effects from measurements known as unfolding
  - Excellent example of an inverse problem in HEP
- Investigate latent diffusion model for generative unfolding



Inverse problem: (noun) a problem with no solution

## The Landscape of ML Based Unfolding

#### **Discriminative**

- Omnifold is being used to measure physics!
  - <u>H1 collaboration substructure</u> <u>measurement</u>
- By far the most mature high dimensional unfolding algorithm
- What if we have limited data events?

#### Generative

- Learn to generate unfolded data conditioned on detector observations
- Lots of interesting ideas, and open questions
- Could work even with limited data events
- But prior dependence, variable dimensions, etc...

## The Landscape of ML Based Unfolding

#### **Discriminative**

- Omnifold is being used to measure physics!
  - <u>H1 collaboration substructure</u> <u>measurement</u>
- By far the most mature high dimensional unfolding algorithm
- What if we have limited data events?

#### Generative

- Learn to generate unfolded data conditioned on detector observations
- Lots of interesting ideas, and open questions
- Could work even with limited data events
- But prior dependence, variable dimensions, etc...

### **From Diffusion to Variational Latent Diffusion**

- **Diffusion** models are a type of *conditional (c)* generative model which learns the reverse dynamics for a Gaussian stochastic differential equation.
- Given a *noise schedule* based on log signal-to-noise ratio  $\gamma$ , define our flow.

$$\sigma_t = \sqrt{\operatorname{sigmoid}(\gamma_\phi(t))} \text{ and } \alpha_t = \sqrt{\operatorname{sigmoid}(-\gamma_\phi(t))}$$
$$x(t) = \alpha(t)x(0) + \sigma(t)\epsilon_t \text{ where } \epsilon_t \sim \mathcal{N}(0, 1)$$

• Train a network to estimate  $\epsilon$  and sample according to inverse SDE.

$$\mathcal{L} = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,1), t \sim \mathcal{U}(0,1)} \left[ \gamma'(t) \|\epsilon - \hat{\epsilon}(x_t, t, c)\|_2^2 \right]$$
$$\int_1^0 f(t) x(t) + \frac{g^2(t)\hat{\epsilon}(x_t, t, c)}{2\sigma} dt$$

[1] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. ICLR 2021.

## **From Diffusion to Variational Latent Diffusion**

• Latent Diffusion (LDM)<sup>2</sup> performs the forward and reverse SDE in a *latent* space from a pre-trained VAE. This VAE is usually pre-trained in either unsupervised manner with only the data or with a contrastive objective such as CLIP.

$$x \to z \sim VAE(x)$$

• Variational Diffusion (VDM)<sup>3</sup> Interprets the entire diffusion model as a hierarchical variational model with infinite depth. This allows us to learn an optimal noise schedule for our diffusion.

$$\gamma \to \gamma_{\phi}(t)$$
 with  $\mathcal{L}_{\phi} = Var[\mathcal{L}_{\text{diffusion}}]$ 

[2] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models, 2021.
[3] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances in neural information processing systems, 34:21696–21707, 2021.

## **From Diffusion to Variational Latent Diffusion**

- We combine these ideas into a single unified end-to-end model.
- VAE is optimized to find ideal space to perform diffusion in.
  - Interpreted as another layer in the hierarchical VAE, introduce additional regularization loss.
  - Latent space may be **higher dimensional** than data space!
- Noise Schedule is optimized simultaneously as in VDM.
  - Continuous time diffusion process is used for training.
  - Inference is performed in discrete time.



### **Distribution-Free Metrics Results**

- Compare each of these models to evaluate the effect of the latent space and unified training.
- Also compare the a simple Conditional VAE (CVAE) and a normalizing flow-based model (CINN)<sup>4</sup>.
- Notice latent space is **very important** to model performance, and unified training outperformed pre-trained LDM.

|        | Wasserstein | Energy | K-S   | $KL_{64}$ | $KL_{128}$ | $KL_{256}$ |
|--------|-------------|--------|-------|-----------|------------|------------|
| VLD    | 108.76      | 7.59   | 4.08  | 3.47      | 3.74       | 4.53       |
| UC-VLD | 73.56       | 6.35   | 3.41  | 5.77      | 7.10       | 8.48       |
| C-VLD  | 389.62      | 25.39  | 4.65  | 9.54      | 10.09      | 10.79      |
| LDM    | 402.32      | 24.09  | 5.91  | 14.71     | 16.34      | 17.92      |
| VDM    | 2478.35     | 181.35 | 17.14 | 29.28     | 32.29      | 35.60      |
| CVAE   | 484.56      | 32.29  | 6.37  | 7.79      | 9.17       | 10.60      |
| CINN   | 3009.08     | 185.13 | 15.74 | 28.55     | 30.19      | 32.37      |

[4] Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, Armand Rousselot, Ramon Winterhalder, Lynton Ardizzone, and Ullrich Köthe. Invertible networks or partons to detector and back again. SciPost Phys., 9:074, 2020.

#### **Testing Dataset Kinematics Distributions**



9

#### **Future Work**

- Want to perform **particle** level unfolding
- We lose the definite fixed-length encoding available due to the parton's feynman diagram. **Particle events are variable length!**
- Extend this method to be able to unfold an arbitrary number of objects simultaneously.
- Investigate **prior dependence** of generative unfolding
- Acceptance effects, inefficiencies, systematics, etc. etc. etc.

"Unfolding is a complicated business and one is well advised to ask in each problem if it can be avoided" - G. Cowan, A Survey of Unfolding Methods for Particle Physics

#### Thank you

## **Posterior Distribution Examples**

- Compare posterior distributions produced by the LVD for individual example events to an empirical estimate of the posterior from the testing dataset.
- Notice that the LVD has very tight posteriors for challenging kinematics including the Mass and Pt.
- Notice that the LVD managed to discover a bi-modal posterior for neutrino eta!

