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Unfolding At The LHC

e Every cross section measurement subject to detector effects

e Process of removing detector effects from measurements known as unfolding
o Excellent example of an inverse problem in HEP

e Investigate latent diffusion model for generative unfolding

Parton Detector

Inverse problem: (noun) a problem with no solution 5



The Landscape of ML Based Unfolding

Omnifold is being used to measure

physics!
o H1 collaboration substructure
measurement

By far the most mature high
dimensional unfolding algorithm
What if we have limited data

events?

Learn to generate unfolded data
conditioned on detector
observations

Lots of interesting ideas, and
open questions

Could work even with limited
data events

But prior dependence, variable
dimensions, etc...


https://arxiv.org/abs/2303.13620
https://arxiv.org/abs/2303.13620
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From Diffusion to Variational Latent Diffusion

e Diffusion models are a type of conditional (c) generative model which learns
the reverse dynamics for a Gaussian stochastic differential equation.
e Given a noise schedule based on log signal-to-noise ratio y, define our flow.

o = \/Sigmoid(7¢(t)) and oy = \/sigmoid(—%(t))
z(t) = a(t)x(0) + o(t)e; where ¢, ~ N(0,1)

e Train a network to estimate € and sample according to inverse SDE.

£ = Econonanion |V(8) e = &z, t,)|13]

/ f QQ(t)é(xtatac) dt
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[1] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. ICLR 2021.
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From Diffusion to Variational Latent Diffusion

e Latent Diffusion (LDM)? performs the forward and reverse SDE in a latent
space from a pre-trained VAE. This VAE is usually pre-trained in either
unsupervised manner with only the data or with a contrastive objective such
as CLIP.

r— z~VAE(x)

e Variational Diffusion (VDM)? Interprets the entire diffusion model as a
hierarchical variational model with infinite depth. This allows us to learn an
optimal noise schedule for our diffusion.

Y — ’Y¢(t) with /:fqb = Var [ﬁdiffusion]

[2] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution image synthesis with latent diffusion models, 2021.. (&)
[3] Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances in neural information processing systems, 34:21696-21707, 2021.



From Diffusion to Variational Latent Diffusion

e We combine these ideas into a single unified end-to-end model.

e VAE is optimized to find ideal space to perform diffusion in.
o Interpreted as another layer in the hierarchical VAE, introduce additional regularization loss.
o Latent space may be higher dimensional than data space!

e Noise Schedule is optimized simultaneously as in VDM.

o  Continuous time diffusion process is used for training.
o Inference is performed in discrete time.

C-VLD and UC-VLD only
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Distribution-Free Metrics Results

e Compare each of these models to evaluate the effect of the latent space and
unified training.

e Also compare the a simple Conditional VAE (CVAE) and a normalizing
flow-based model (CINN)*.

e Notice latent space is very important to model performance, and unified

training outperformed pre-trained LDM.
Wasserstein Energy K-S KL64 KL128 KL256

VLD 108.76 7.59  4.08 3.47 3.74 4.53
UC-VLD 73.56 6.35 341 5.77 7.10 8.48
C-VLD 389.62 2539  4.65 9.54 10.09 10.79
LDM 402.32 2409 591 1471 16.34 17.92
VDM 247835 181.35 17.14 29.28 3229 35.60
CVAE 484.56 3229  6.37 7.79 9.17 10.60
CINN 3009.08 185.13 15.74  28.55 30.19 32.37

[4] Marco Bellagente, Anja Butter, Gregor Kasieczka, Tilman Plehn, Armand Rousselot, Ramon Winterhalder, Lynton Ardizzone, and Ullrich K&the. Invertible networks or partons to detector and back
again. SciPost Phys., 9:074, 2020.
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Testing Dataset Kinematics Distributions
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Want to perform particle level unfolding

We lose the definite fixed-length encoding available due to the parton’s
feynman diagram. Particle events are variable length!

Extend this method to be able to unfold an arbitrary number of objects
simultaneously.

Investigate prior dependence of generative unfolding

Acceptance effects, inefficiencies, systematics, etc. etc. etc.

“Unfolding is a complicated business and one is well advised to ask in each problem if it can be avoided”
- G. Cowan, A Survey of Unfolding Methods for Particle Physics
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Thank you
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Posterior Distribution Examples

e Compare posterior distributions produced by the LVD for individual example
events to an empirical estimate of the posterior from the testing dataset.

e Notice that the LVD has very tight posteriors for challenging kinematics
including the Mass and Pt.

e Notice that the LVD managed to discover a bi-modal posterior for neutrino eta!
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