

UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

Diffusion Models

for LHC event generation

Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson, Jonas Spinner arXiv: 2305.10475

ML4Jets, 07.11.2023

SPONSORED BY THE

Federal Ministry of Education and Research

UNIVERSITÄT HEIDELBERG ZUKUNFT **SEIT 1386**

Uncertainty-Aware Diffusion Models SPONSORED BY THE

Anja Butter, Nathan Huetsch, Sofia Palacios Schweitzer, Tilman Plehn, Peter Sorrenson, Jonas Spinner arXiv: 2305.10475

ML4Jets, 07.11.2023

for LHC event generation

Federal Ministry of Education and Research

Why Event Generation?

Vast amount of data collected by collider experiments

Standard Model is probed

Theoretical predictions (simulation) need to match experimental statistics

Why ML Event Generation?

Figure from https://web.archive.org/web/20220706170326/https://lhc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png

Why ML Event Generation?

Figure from https://web.archive.org/web/20220706170326/https://lhc-commissioning.web.cern.ch/schedule/images/LHC-nominal-lumi-projection.png

Raising Awareness for Uncertainties

Being precise = estimating uncertainties

Raising Awareness for Uncertainties

Being precise = estimating uncertainties

How can we account for network uncertainties?

Once training is done: W_1 , W_2 , W_3 fixed (*"Network output is deterministic"*)

Bayesianization: We draw each entry from W_1, W_2, W_3 from distribution $q(\theta | \mu_{\phi}, \sigma_{\phi})$

$$\vec{z} = \mathbf{W}_{3}\vec{y}_{2}$$
Output
$$\left\{ \vec{z} \right\} = \frac{1}{N} \sum_{i} \vec{z}_{i}$$

$$\sigma_{pred}^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(\langle \vec{z} \rangle - \vec{z}_{i} \right)^{2}$$

How to Bayesianize

1. Replace each linear layer with a *Bayesian* layer

2. Add additional regularisation term to likelihood loss

 \overrightarrow{x}

Input

Figure from J.Ho et al.: arXiv:2006.11239

How to Bayesianize - DDPM

$$\frac{1}{2\sigma_t^2} \frac{\beta_t^2}{(1-\beta_t)\bar{\beta}_t} |\epsilon(t) - \epsilon_{\theta}(t)|^2$$

How to Bayesianize - DDPM

How to Bayesianize - DDPM

Diffusion Models (CFM)

Evolution go

Figure from J.Ho et al.: arXiv:2006.11239

overned by
$$v \equiv \frac{dx}{dt}$$

Diffusion Models (CFM)

 $t \sim \mathcal{U}([0,1])$ $x_0 \sim p(x_0), x_1 \sim \mathcal{N}(0, 1) \longrightarrow x(t|x_0) = (1-t)x_0 + tx_1$

How to Bayesianize - CFM

$$\left(v_{\theta} - (x_1 - x_0)\right)^2$$

+ ???

How to Bayesianize - CFM

Choosing Test Phase-Space

Figure from A. Butter et al.: arXiv:2203.07460, R. Winterhalder

Concrete Application — LHC

3 - 5 final state particles (including jets)

12 - 20 dimensional phase space

Smart preprocessing:

Global Phase Shift

Drop muon masses

→ reduces phase space to 9 - 17 dimensions

Concrete Application — LHC

 $\rightarrow p_{j_3}$

Percent level precision (comparable to statistical uncertainty)

Percent level precision (comparable to statistical uncertainty)

Percent level precision (comparable to statistical uncertainty)

Uncertainty well-defined

Uncertainty well-defined

Surpasses INN precision (A. Butter et al.: arXiv:2110.13632)

By construction:

Systematic failure modes of network not covered by Bayesian uncertainties

And now what?

(Bayesian) Diffusion models show potential to be applied to particle physics tasks

- Diffusion Models can compete with current benchmark (precision-wise)
 - A lot of on-going research (generation speed up, precision, etc.)
 - Bayesian Versions seem to estimate training uncertainty correctly

Backup

$$q(x_1, \dots, x_T | x_0) = \prod_{t=1}^T q(x_t)$$
$$q(x_t | x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_t)$$

Figure from J.Ho et al.: arXiv:2006.11239

$$(x_{t-1})$$

x_{t-1}, β_t where β_t follows noise scheduler

...but we don't know

Figure from J.Ho et al.: arXiv:2006.11239

$$-1 | x_t) = \frac{q(x_t | x_{t-1})q(x_{t-1})}{q(x_t)}$$

w $q(x_t) \& q(x_{t-1}) \quad \bigotimes \quad \bigotimes$

$$x_t) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sigma_{\theta}^2(x_t, t))$$

$$x_T(\theta) = p(x_T) \prod_{t=1}^T p_{\theta}(x_{t-1} | x_t)$$

$$\mathscr{L}_{DDPM} = -\log p_{\theta}(x_0) \approx \frac{1}{2\sigma_t^2} \frac{\beta_t^2}{(1-\beta_t)\bar{\beta}_t} |\epsilon(t) - \epsilon_{\theta}(t)|^2$$

Figure from J.Ho et al.: arXiv:2006.11239

Latent Space $x_T \sim p(x_T)(=\mathcal{N}(0,1))$

$$\frac{1}{2\sigma_t^2} \frac{\beta_t^2}{(1-\beta_t)\bar{\beta}_t} |\epsilon(t) - \epsilon_{\theta}(t)|^2$$
Predicted and actual

noise added at time t

$$\mathscr{L}_{DDPM} = -\log p_{\theta}(x_0) \approx \frac{1}{2\sigma_t^2} \frac{\beta_t^2}{(1-\beta_t)\bar{\beta}_t} |\epsilon(t) - \epsilon_{\theta}(t)|^2$$

Figure from J.Ho et al.: arXiv:2006.11239

Latent Space $x_T \sim p(x_T) (= \mathcal{N}(0,1))$

Denoising

Diffusion Models (CFM)

Figure from J.Ho et al.: arXiv:2006.11239

Diffusion Models (CFM)

Figure from J.Ho et al.: arXiv:2006.11239