Generating Particle Cloud Jets with Denoising Diffusion

ML4Jets, Hamburg, 2023

Matthew Leigh, <u>Debajyoti Sengupta</u>, Johnny Raine, Guillaume Quetant, Tobias Golling UNIVERSITY OF GENEVA

Problem and Goal

Kansal et. al. 2022

- Deep learning methods for jet generation is a growing topic in HEP
 - Fast-Sim:
 - ML methods can improve generation times by orders of magnitude
 - Template building:
 - Use for anomaly detection
- Solution: use **Diffusion**
 - Generation = iterative **denoising steps**

Diffusion as differential equations

Diffusion as differential equations

Sample Generation

- Numerically integrate reverse process
 - Which process (SDE or ODE) and which integration method is **flexible**
- Each step **requires a forward pass** of the network
 - Generation needs more computation than GANs and Flows
 - Main **detriment** to using **diffusion** models

Always a trade-off between time and fidelity

- Using the <u>JetNet</u> dataset and metrics
- Large radius **point clouds** jets
 - Gluon, Quark, Top, W, Z
 - Up to 150 constituents
 - $\circ \quad (\Delta \eta, \Delta \phi, p_{\mathsf{T}})$

PC-Jedi Setup

- First attempt at particle cloud diffusion
- Based on a transformer
- Trained **separate models** for gluon and top
- Denoising objective

PC-Jedi Results

Model was competitive to SOTA <u>MPGAN</u>

PC-Jedi Results

- Struggled recreating substructure variables for top jets
- And was slow

JeDi — Droid

PC-Droid

One conditional model for all jet types

- Now **predicting denoised data** (not noise)
- **Smarter noise sampling** to focus on key areas of the trajectory during training.
- Skip connections for stability during training.

Compatible with SotA SDE/ODE Solvers.

Improvements with PC-Droid: ODE Trajectories

Speed and scaling improvements: CAE Architecture

Increase number of constituents from 30 to 150

- Introduced new network type: Cross Attention Encoder
- Bipartite graph between point cloud and collection of global tokens
 - Number of global tokens is a hyperparameter (M)
 - \circ O(NM) computations compared to O(N²) of standard transformer

PC-Droid Results

- Great performance on 150 dataset
- New CAE network performs similarly with a big increase in generation speed

PC-Droid Results

- Massive improvements over our older diffusion model and MPGAN on 30 constituent dataset
- Significantly overtaking SOTA models

Further speed improvements: Consistency Distillation

- One of many diffusion **distillation methods**
- Use a **pretrained model** to train a **student model** to perform diffusion in less steps
- In some cases even allowing generation in **1 step**

Time vs Fidelity Trade-Off

- Comparison with other generative models on 150 dataset
 - <u>FPCD</u>
 - EPIC-GAN

Time vs Fidelity Trade-Off

- Comparison with other generative models on 150 dataset
 - <u>FPCD</u>
 - EPIC-GAN

- PC-Droid performance on higher end is now close to ideal and 5 times faster
- Can sacrifice fidelity to get up to 100 times faster with distillation

Outlook

- Introduced diffusion models into HEP for point cloud generation with PC-JeDI
- Significantly improved quality with PC-Droid
- Looked at all models in terms of time-vs-quality trade off
- We are now looking at new ways to use such models beyond fast-sim (Next talk!)

Current work

- PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics
 - March 2023
 - Theory based on <u>Score-Based Generative Modeling through Stochastic Differential Equations</u>
- PC-Droid: Faster diffusion and improved quality for particle cloud generation
 - July 2023
 - Theory based on <u>Elucidating the Design Space of Diffusion-Based Generative Models</u> and <u>Consistency Models</u>
- EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion
 - September 2023

Thank You

Backup

Proposal

- Use Diffusion
 - Generation = iterative **denoising steps**
- Point clouds
 - Replace the typical UNet with a message passing network
- Can use the **conditional generation**
 - Generate jets with desired high-level features
 - Momentum, mass, signal type
 - Required for Fast-Sim and template building

Diffusion as an **SDE**

Diffusion as an **SDE**

Approximating the score function with a network is impossible $\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t)} \| \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t) \|^2$ time diffused neural network score of diffused data

Approximating the score function with a network is impossible $\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t)} \| \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t) \|^2$

> marginal diffused densities are intractable

Approximating the score function with a network is impossible $\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t)} \| \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t) \|^2$

Instead we look at the diffusion process of a single sample \mathbf{x}_{0} $\min_{\theta} \underbrace{\mathbb{E}_{t \sim U(0,1)}}_{\text{time}} \underbrace{\mathbb{E}_{\mathbf{x}_{0} \sim p(\mathbf{x}_{0})}}_{\text{data sample diffused sample}} \underbrace{\mathbb{E}_{\mathbf{x}_{t} \sim p(\mathbf{x}_{t} | \mathbf{x}_{0})}}_{\text{score of diffused sample}} \|\mathbf{s}_{\theta}(\mathbf{x}_{t}, t) - \underbrace{\nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t} | \mathbf{x}_{0})}_{\text{score of diffused sample}} \|\mathbf{x}_{0}\|^{2}$

Approximating the score function with a network is impossible $\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t)} \| \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t) \|^2$

Instead we look at the diffusion process of a single sample $\mathbf{x}_{\mathbf{0}}$ $\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\mathbf{x}_{0} \sim p(\mathbf{x}_{0})} \mathbb{E}_{\mathbf{x}_{t} \sim p(\mathbf{x}_{t}|\mathbf{x}_{0})} \| \mathbf{s}_{\theta}(\mathbf{x}_{t},t) - \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\mathbf{x}_{0}) \|^{2}$

> This change is <u>allowed</u> because after expectations $s_{\theta}(\boldsymbol{x}_t,t) \sim \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t)$

Approximating the score function with a network is impossible $\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t)} \| \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t) \|^2$

Instead we look at the diffusion process of a single sample $\mathbf{x}_{\mathbf{0}}$ $\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\mathbf{x}_{0} \sim p(\mathbf{x}_{0})} \mathbb{E}_{\mathbf{x}_{t} \sim p(\mathbf{x}_{t}|\mathbf{x}_{0})} \| \mathbf{s}_{\theta}(\mathbf{x}_{t},t) - \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}|\mathbf{x}_{0}) \|^{2}$

> This change is <u>allowed</u> because after expectations $\boldsymbol{s}_{\theta}(\boldsymbol{x}_t,t) \sim \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t)$

This change is <u>useful</u> because the conditional density is tractable $p(\boldsymbol{x}_t | \boldsymbol{x}_0) = \mathcal{N}(\boldsymbol{x}_t; \gamma(t) \boldsymbol{x}_0, \sigma(t)^2 \boldsymbol{I})$

Old Learning Objective

_ _ _

$$\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_0 \sim p(\boldsymbol{x}_0)} \mathbb{E}_{\boldsymbol{x}_t \sim p(\boldsymbol{x}_t | \boldsymbol{x}_0)} \| \boldsymbol{s}_{\theta}(\boldsymbol{x}_t, t) - \nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t | \boldsymbol{x}_0) \|^2$$

Conditional Density:

$$p(\boldsymbol{x}_t | \boldsymbol{x}_0) = \mathcal{N}(\boldsymbol{x}_t; \gamma(t) \boldsymbol{x}_0, \sigma(t)^2 \boldsymbol{I})$$

Diffused Sample Score:

$$\nabla_{\boldsymbol{x}_t} \log p(\boldsymbol{x}_t | \boldsymbol{x}_0) = \nabla_{\boldsymbol{x}_t} \frac{(\boldsymbol{x}_t - \gamma(t) \boldsymbol{x}_0)^2}{2\sigma(t)^2} = -\frac{\boldsymbol{x}_t - \gamma(t) \boldsymbol{x}_0}{\sigma(t)^2} = -\frac{\gamma(t) \boldsymbol{x}_0 + \sigma(t) \boldsymbol{\epsilon} - \gamma(t) \boldsymbol{x}_0}{\sigma(t)^2} = -\frac{\boldsymbol{\epsilon}}{\sigma(t)}$$

Neural Network Parameterisation:

$$\hat{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{x}_t, t) = -\sigma(t)s_{\theta}(\boldsymbol{x}_t, t)$$

New Learning objective:

$$\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_0 \sim p(\boldsymbol{x}_0)} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{I})} \frac{1}{\sigma(t)^2} \| \hat{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{x}_t,t) - \boldsymbol{\epsilon} \|^2$$
30

$$\min_{\theta} \mathbb{E}_{t \sim U(0,1)} \mathbb{E}_{\boldsymbol{x}_0 \sim p(\boldsymbol{x}_0)} \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{0},\boldsymbol{I})} \frac{1}{\sigma(t)^2} \| \hat{\boldsymbol{\epsilon}}_{\theta}(\boldsymbol{x}_t,t) - \boldsymbol{\epsilon} \|^2$$

Sample time:	t~U[0,1]
Sample data:	x0~{Training set}
Sample noise:	$\epsilon \sim N(0,1)_d$
Corrupt data:	$xt = \gamma(t) * x0 + \sigma(t) * \epsilon$
Get loss:	$L = c(t) * [NN(xt,t) - eps]^2$

PC-Jedi: Paper 1

Improvements with PC-Droid

1. Change to EDM setup with preprocessing and sigma sampling SDE: $dx_t = \sqrt{2t} dw$ ODE: $dx_t = -t\nabla_x \log p(x;t) dt$

PC-Jedi Setup

- For generation we tested:
 - Euler
 - Euler-Maruyama (SDE)
 - **RK4**
 - DDIM

Generated Constituents

Conditional Adherence

Is our conditional model actually obeying its conditions?

- Natural difference between conditional and point cloud variables in the data
- Slightly larger spread in **p**_T
 - Majority within 0.3%

PC-Jedi Results

Model was competitive to SOTA <u>MPGAN</u>

PC-Jedi Results

• Struggled recreating substructure variables for top jets

PC-Droid: Paper 2

CD Models Results

- Tested CD model with **1 and 5** step generation
- Significantly faster than base model (100x) but lower quality

Sample Generation

- Numerically integrate reverse process
 - Which process (SDE or ODE) and which integration method is flexible
- Each step **requires a forward pass** of the network
 - Generation needs more computation than GANs and Flows
 - Main **detriment** to using **diffusion** models

Always a trade-off between time and fidelity

SDE with Euler-Maruyama

