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Problem and Goal

● Deep learning methods for jet generation is a growing topic in HEP
○ Fast-Sim:

■ ML methods can improve generation times by orders of magnitude
○ Template building:

■ Use for anomaly detection
● Solution: use Diffusion

○ Generation = iterative denoising steps
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Kansal et. al. 2022 

https://arxiv.org/pdf/2106.11535.pdf


Forward and Reverse ODE

Diffusion as differential equations

3score function 

CVPR 2022 Tutorial

https://cvpr2022-tutorial-diffusion-models.github.io/


Forward and Reverse ODE

Diffusion as differential equations

4score function 

CVPR 2022 Tutorial

CAN LEARN 
THIS with a NN

https://cvpr2022-tutorial-diffusion-models.github.io/


Sample Generation
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● Numerically integrate reverse process
○ Which process (SDE or ODE) and which integration method is flexible

● Each step requires a forward pass of the network
○ Generation needs more computation than GANs and Flows
○ Main detriment to using diffusion models

● Using the JetNet dataset and metrics
● Large radius point clouds jets

○ Gluon, Quark, Top, W, Z
○ Up to 150 constituents
○ (Δ𝜂, Δ𝜙, pT)

Always a trade-off between time and fidelity

https://zenodo.org/record/4834876


PC-Jedi Setup
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● First attempt at particle cloud diffusion
● Based on a transformer
● Trained separate models for gluon and top 
● Denoising objective



PC-Jedi Results
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● Model was competitive to SOTA MPGAN

https://arxiv.org/abs/2106.11535


PC-Jedi Results
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● Struggled recreating substructure variables for top jets
● And was slow



JeDi → Droid
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PC-Droid
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One conditional model for all jet types

- Now predicting denoised data (not 
noise)

- Smarter noise sampling to focus 
on key areas of the trajectory during 
training.

- Skip connections for stability 
during training.

Compatible with SotA SDE/ODE Solvers.
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Improvements with PC-Droid: ODE Trajectories

1. Change to EDM setup

JeDi Droid

Straighter trajectories
- Fewer truncation errors
- Easier solve

https://arxiv.org/abs/2206.00364


Increase number of constituents from 30 to 150

● Introduced new network type: Cross Attention Encoder
● Bipartite graph between point cloud and collection of global tokens

○ Number of global tokens is a hyperparameter (M)
○ O(NM) computations compared to O(N2) of standard transformer
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Speed and scaling improvements: CAE Architecture



● Great performance on 150 dataset
● New CAE network performs similarly with a big increase in generation speed

PC-Droid Results
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https://arxiv.org/abs/2307.06836



PC-Droid Results
● Massive improvements over our older diffusion model and MPGAN on 30 constituent dataset
● Significantly overtaking SOTA models
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https://arxiv.org/abs/2307.06836



● One of many diffusion distillation methods
● Use a pretrained model to train a student model to perform diffusion in less steps
● In some cases even allowing generation in 1 step

Further speed improvements: Consistency Distillation

15Consistency Models

https://arxiv.org/pdf/2303.01469.pdf


Time vs Fidelity Trade-Off
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● Comparison with other generative 
models on 150 dataset
● FPCD
● EPIC-GAN

https://arxiv.org/abs/2307.06836

https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2301.08128


Time vs Fidelity Trade-Off
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● Comparison with other generative 
models on 150 dataset
● FPCD
● EPIC-GAN

● PC-Droid performance on higher 
end is now close to ideal and 5 
times faster

● Can sacrifice fidelity to get up to 
100 times faster with distillation

https://arxiv.org/abs/2307.06836

https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2301.08128


Outlook

● Introduced diffusion models into HEP for point cloud generation with PC-JeDI
● Significantly improved quality with PC-Droid
● Looked at all models in terms of time-vs-quality trade off
● We are now looking at new ways to use such models beyond fast-sim (Next talk!)
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Current work

● PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics
○ March 2023
○ Theory based on Score-Based Generative Modeling through Stochastic Differential Equations

● PC-Droid: Faster diffusion and improved quality for particle cloud generation
○ July 2023
○ Theory based on Elucidating the Design Space of Diffusion-Based Generative Models and

Consistency Models

● EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion
○ September 2023
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https://arxiv.org/abs/2303.05376
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2307.06836
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2310.00049v1


Thank You
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Backup

21



Proposal

● Use Diffusion
○ Generation = iterative denoising steps

● Point clouds
○ Replace the typical UNet with

a message passing network

● Can use the conditional generation
○ Generate jets with desired high-level features

■ Momentum, mass, signal type
○ Required for Fast-Sim and template building
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Leopard wallpaper, graphite realism

simple logo design story book, low poly, flat 2d



Diffusion as an SDE
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CVPR 2022 Tutorial

Forward Diffusion Process (Trivial)

f, g are hyperparameters

https://cvpr2022-tutorial-diffusion-models.github.io/


Diffusion as an SDE
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CVPR 2022 Tutorial

Forward Diffusion Process (Trivial)

If f is affine

https://cvpr2022-tutorial-diffusion-models.github.io/


Denoising Learning Objective
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Approximating the score function with a network is impossible

time diffused 
data

neural network score of diffused data



Denoising Learning Objective
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Approximating the score function with a network is impossible

marginal diffused densities are 
intractable



Denoising Learning Objective
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Approximating the score function with a network is impossible

Instead we look at the diffusion process of a single sample x0 

time data sample diffused sample score of diffused sample



Denoising Learning Objective

28

Approximating the score function with a network is impossible

Instead we look at the diffusion process of a single sample x0 

~
This change is allowed because after expectations



Denoising Learning Objective
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Approximating the score function with a network is impossible

Instead we look at the diffusion process of a single sample x0 

~
This change is allowed because after expectations

This change is useful because the conditional density is tractable



Old Learning Objective

Conditional Density:

Diffused Sample Score:

Neural Network Parameterisation:  

New Learning objective:

Denoising Learning Objective
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Denoising Learning Objective
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Sample time: t~U[0,1]

Sample data: x0~{Training set}

Sample noise: ε~N(0,1)d

Corrupt data: xt = γ(t)*x0 + σ(t)*ε

Get loss: L = c(t)*[NN(xt,t) - eps]^2
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PC-Jedi: Paper 1
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Improvements with PC-Droid

1. Change to EDM setup with preprocessing and sigma sampling

SDE:

ODE:

EDM Paper

https://arxiv.org/pdf/2206.00364.pdf


PC-Jedi Setup
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● For generation we tested:
○ Euler 
○ Euler-Maruyama (SDE)
○ RK4
○ DDIM



Conditional Adherence

Is our conditional model actually obeying its conditions?

● Natural difference between conditional and point cloud variables in the data
● Slightly larger spread in pT

○ Majority within 0.3%
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https://arxiv.org/abs/2307.06836



PC-Jedi Results
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● Model was competitive to SOTA MPGAN

https://arxiv.org/abs/2106.11535


PC-Jedi Results
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● Struggled recreating substructure variables for top jets
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PC-Droid: Paper 2



● Tested CD model with 1 and 5 step generation
● Significantly faster than base model (100x) but lower quality

CD Models Results
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!! !!https://arxiv.org/abs/2307.06836



Sample Generation
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● Numerically integrate reverse process
○ Which process (SDE or ODE) and which integration method is flexible

● Each step requires a forward pass of the network
○ Generation needs more computation than GANs and Flows
○ Main detriment to using diffusion models

SDE with Euler-Maruyama ODE with DDIM

Always a trade-off between time and fidelity


