
Generating Particle Cloud Jets with
Denoising Diffusion

ML4Jets, Hamburg, 2023
Matthew Leigh, Debajyoti Sengupta, Johnny Raine, Guillaume Quetant, Tobias Golling

UNIVERSITY OF GENEVA

Problem and Goal

● Deep learning methods for jet generation is a growing topic in HEP
○ Fast-Sim:

■ ML methods can improve generation times by orders of magnitude
○ Template building:

■ Use for anomaly detection
● Solution: use Diffusion

○ Generation = iterative denoising steps
2

Kansal et. al. 2022

https://arxiv.org/pdf/2106.11535.pdf

Forward and Reverse ODE

Diffusion as differential equations

3score function

CVPR 2022 Tutorial

https://cvpr2022-tutorial-diffusion-models.github.io/

Forward and Reverse ODE

Diffusion as differential equations

4score function

CVPR 2022 Tutorial

CAN LEARN
THIS with a NN

https://cvpr2022-tutorial-diffusion-models.github.io/

Sample Generation

5

● Numerically integrate reverse process
○ Which process (SDE or ODE) and which integration method is flexible

● Each step requires a forward pass of the network
○ Generation needs more computation than GANs and Flows
○ Main detriment to using diffusion models

● Using the JetNet dataset and metrics
● Large radius point clouds jets

○ Gluon, Quark, Top, W, Z
○ Up to 150 constituents
○ (Δ𝜂, Δ𝜙, pT)

Always a trade-off between time and fidelity

https://zenodo.org/record/4834876

PC-Jedi Setup

6

● First attempt at particle cloud diffusion
● Based on a transformer
● Trained separate models for gluon and top
● Denoising objective

PC-Jedi Results

7

● Model was competitive to SOTA MPGAN

https://arxiv.org/abs/2106.11535

PC-Jedi Results

8

● Struggled recreating substructure variables for top jets
● And was slow

JeDi → Droid
9

PC-Droid

10

One conditional model for all jet types

- Now predicting denoised data (not
noise)

- Smarter noise sampling to focus
on key areas of the trajectory during
training.

- Skip connections for stability
during training.

Compatible with SotA SDE/ODE Solvers.

11

Improvements with PC-Droid: ODE Trajectories

1. Change to EDM setup

JeDi Droid

Straighter trajectories
- Fewer truncation errors
- Easier solve

https://arxiv.org/abs/2206.00364

Increase number of constituents from 30 to 150

● Introduced new network type: Cross Attention Encoder
● Bipartite graph between point cloud and collection of global tokens

○ Number of global tokens is a hyperparameter (M)
○ O(NM) computations compared to O(N2) of standard transformer

12

Speed and scaling improvements: CAE Architecture

● Great performance on 150 dataset
● New CAE network performs similarly with a big increase in generation speed

PC-Droid Results

13
https://arxiv.org/abs/2307.06836

PC-Droid Results
● Massive improvements over our older diffusion model and MPGAN on 30 constituent dataset
● Significantly overtaking SOTA models

14
https://arxiv.org/abs/2307.06836

● One of many diffusion distillation methods
● Use a pretrained model to train a student model to perform diffusion in less steps
● In some cases even allowing generation in 1 step

Further speed improvements: Consistency Distillation

15Consistency Models

https://arxiv.org/pdf/2303.01469.pdf

Time vs Fidelity Trade-Off

16

● Comparison with other generative
models on 150 dataset
● FPCD
● EPIC-GAN

https://arxiv.org/abs/2307.06836

https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2301.08128

Time vs Fidelity Trade-Off

17

● Comparison with other generative
models on 150 dataset
● FPCD
● EPIC-GAN

● PC-Droid performance on higher
end is now close to ideal and 5
times faster

● Can sacrifice fidelity to get up to
100 times faster with distillation

https://arxiv.org/abs/2307.06836

https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2301.08128

Outlook

● Introduced diffusion models into HEP for point cloud generation with PC-JeDI
● Significantly improved quality with PC-Droid
● Looked at all models in terms of time-vs-quality trade off
● We are now looking at new ways to use such models beyond fast-sim (Next talk!)

18

Current work

● PC-JeDi: Diffusion for Particle Cloud Generation in High Energy Physics
○ March 2023
○ Theory based on Score-Based Generative Modeling through Stochastic Differential Equations

● PC-Droid: Faster diffusion and improved quality for particle cloud generation
○ July 2023
○ Theory based on Elucidating the Design Space of Diffusion-Based Generative Models and

Consistency Models

● EPiC-ly Fast Particle Cloud Generation with Flow-Matching and Diffusion
○ September 2023

19

https://arxiv.org/abs/2303.05376
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2307.06836
https://arxiv.org/abs/2206.00364
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2310.00049v1

Thank You

20

Backup

21

Proposal

● Use Diffusion
○ Generation = iterative denoising steps

● Point clouds
○ Replace the typical UNet with

a message passing network

● Can use the conditional generation
○ Generate jets with desired high-level features

■ Momentum, mass, signal type
○ Required for Fast-Sim and template building

22

Leopard wallpaper, graphite realism

simple logo design story book, low poly, flat 2d

Diffusion as an SDE

23

CVPR 2022 Tutorial

Forward Diffusion Process (Trivial)

f, g are hyperparameters

https://cvpr2022-tutorial-diffusion-models.github.io/

Diffusion as an SDE

24

CVPR 2022 Tutorial

Forward Diffusion Process (Trivial)

If f is affine

https://cvpr2022-tutorial-diffusion-models.github.io/

Denoising Learning Objective

25

Approximating the score function with a network is impossible

time diffused
data

neural network score of diffused data

Denoising Learning Objective

26

Approximating the score function with a network is impossible

marginal diffused densities are
intractable

Denoising Learning Objective

27

Approximating the score function with a network is impossible

Instead we look at the diffusion process of a single sample x0

time data sample diffused sample score of diffused sample

Denoising Learning Objective

28

Approximating the score function with a network is impossible

Instead we look at the diffusion process of a single sample x0

~
This change is allowed because after expectations

Denoising Learning Objective

29

Approximating the score function with a network is impossible

Instead we look at the diffusion process of a single sample x0

~
This change is allowed because after expectations

This change is useful because the conditional density is tractable

Old Learning Objective

Conditional Density:

Diffused Sample Score:

Neural Network Parameterisation:

New Learning objective:

Denoising Learning Objective

30

Denoising Learning Objective

31

Sample time: t~U[0,1]

Sample data: x0~{Training set}

Sample noise: ε~N(0,1)d

Corrupt data: xt = γ(t)*x0 + σ(t)*ε

Get loss: L = c(t)*[NN(xt,t) - eps]^2

32

PC-Jedi: Paper 1

33

Improvements with PC-Droid

1. Change to EDM setup with preprocessing and sigma sampling

SDE:

ODE:

EDM Paper

https://arxiv.org/pdf/2206.00364.pdf

PC-Jedi Setup

34

● For generation we tested:
○ Euler
○ Euler-Maruyama (SDE)
○ RK4
○ DDIM

Conditional Adherence

Is our conditional model actually obeying its conditions?

● Natural difference between conditional and point cloud variables in the data
● Slightly larger spread in pT

○ Majority within 0.3%

35
https://arxiv.org/abs/2307.06836

PC-Jedi Results

36

● Model was competitive to SOTA MPGAN

https://arxiv.org/abs/2106.11535

PC-Jedi Results

37

● Struggled recreating substructure variables for top jets

38

PC-Droid: Paper 2

● Tested CD model with 1 and 5 step generation
● Significantly faster than base model (100x) but lower quality

CD Models Results

39
!! !!https://arxiv.org/abs/2307.06836

Sample Generation

40

● Numerically integrate reverse process
○ Which process (SDE or ODE) and which integration method is flexible

● Each step requires a forward pass of the network
○ Generation needs more computation than GANs and Flows
○ Main detriment to using diffusion models

SDE with Euler-Maruyama ODE with DDIM

Always a trade-off between time and fidelity

