Funded by

ML Approach to Infer Galaxy **Cluster Masses from eROSITA** X-ray Images

arXiv:2305.00016

Sven Krippendorf, Nicolas Baron Perez, Esra Bulbul, Melih Kara et al.

ML4Jets 08 Nov 2023

Motivation

- What are galaxy clusters?
- Why measure their masses?
 - $n(M, z) \rightarrow \Omega_m, \sigma_8$
- eROSITA
 - Wide-field X-ray instrument
 - Surveys the whole sky every six months
 - 10⁵ clusters expected

K. Dolag, USM

NASA / WMAP Science Team

Predehl et al., 2021

eROSITA Observations

- eFEDS observation
 - Mini survey with $\sim 140 \, \mathrm{deg}^2$
 - 542 detected clusters
- Mock observations
 - Dark matter simulations with flat $\Lambda \rm CDM$ cosmology
 - Mass: $10^{13} \leq M/M_{\odot} \leq 10^{15}$
 - Redshift: $z \leq 1.5$

Liu et al., 2022

Input Data Energy-band Images

- EBI: Spatial information in ten energy channels
 - Squared region of 300 pixels centred at the cluster
 - Resized to 50x50x10 to reduce memory requirements
 - Gaussian smoothed to account for low-count clusters
- Cluster sample of $\sim 8000~\text{clusters}$

CNN Architecture

- Deep ensemble with 30 CNNs
- Preprocessing: Accounts for overfitting
- Redshift is concatenated to the first dense layer

Results eFEDS Simulation

- Mass scatter with traditional method: $\sigma = 19.7~\%$
- Our mass scatter: $\sigma = 18.8~\%$
- Mean predicted uncertainty ~18.8%
- Clusters with smaller uncertainty have smaller scatter

Results eFEDS Observation

- Comparison with masses from traditional method
- Both mass estimates are comparable

7

Conclusions

- CNN can handle real observation images with all kinds of contamination
- Uncertainty associated with ML mass estimates can be provided
- ML approach reduces the mass scatter by 4.8% in comparison to traditional methods

Thank you!

Backup

eROSITA Simulated Observation (eFEDS)

- Based on dark matter simulations with flat $\Lambda {\rm CDM}$ cosmology
- 18 realisations of the eFEDS field
- Mass range: $10^{13.0} \leq M/M_{\odot} \leq 10^{15.2}$
- Redshift range: $0.01 \leq z \leq 1.51$
- Cuts: Detection likelihood > 5 and extent likelihood > 6
 - Likelihoods come from fitting a Gaussian kernel or $\beta\text{-model}$
 - Cluster sample of $\sim 8000~\text{clusters}$

11

Results **eFEDS** Simulation

- Training with uniform weighted sample
 - Scatter increases but follows ideal slope
 - Prediction is stable to different mass distributions in training set
- Training with high detection and extent likelihood • subset (\mathscr{L}_{DET} , $\mathscr{L}_{EXT} > 60$)
 - Scatter decreases significantly (~15.2%)
- Improved bias in low and high mass regime

Uniform weighted sample

Results eFEDS Observation

- Comparison with masses from traditional method (based on count-rate η)
- Both mass estimates are comparable

$$\left\langle \ln \left(\frac{L_{\rm X}}{\rm ergs} \middle| M_{500} \right) \right\rangle = \ln \left(3.36^{+0.53}_{-0.49} \right) + \ln \left(10^{43} \right) + \\ \left[\left(1.44^{+0.14}_{-0.13} \right) + \left(-0.07^{+1.26}_{-0.79} \right) \ln \left(\frac{1+z}{1+z_{\rm piv}} \right) \right] \times \ln \left(\frac{M_{500}}{M_{\rm piv}} \right) \\ + 2 \times \ln \left(\frac{E(z)}{E(z_{\rm piv})} \right) + \left(-0.51^{+0.93}_{-0.75} \right) \times \ln \left(\frac{1+z}{1+z_{\rm piv}} \right),$$

Table C.1: Importance of redshift for our ensemble NN mass predictors:

	Noise-level	Training Set	Test Set
_	$\sigma_N = 0$	$\sigma = 0.180$	$\sigma = 0.188$
	$\sigma_N = 0.01$	$\sigma = 0.178$	$\sigma = 0.186$
	$\sigma_N = 0.1$	$\sigma = 0.191$	$\sigma = 0.204$
	$\sigma_N = 0.2$	$\sigma = 0.208$	$\sigma = 0.224$

We show the respective standard deviations between the true and predicted masses observed on the training and test set. We find that increasing the noise level leads to worse predictions.