SuperCalo

Calorimeter shower super-resolution

lan Pang

Nov 6, 2023 ML4Jets, Hamburg

[2308.11700] **IP**, J. Raine, D. Shih

RUTGERS UNIVERSITY | NEW BRUNSWICK

•Calorimeter shower simulation is major bottleneck in LHC computational pipeline!

- •Calorimeter shower simulation is major bottleneck in LHC computational pipeline!
- •Surrogate modeling to speed up generation of expensive GEANT4 calorimeter showers

- •Calorimeter shower simulation is major bottleneck in LHC computational pipeline!
- •Surrogate modeling to speed up generation of expensive GEANT4 calorimeter showers
- •Most approaches directly simulate the full-dim showers (3D image) in a single step

- •Calorimeter shower simulation is major bottleneck in LHC computational pipeline!
- •Surrogate modeling to speed up generation of expensive GEANT4 calorimeter showers
- •Most approaches directly simulate the full-dim showers (3D image) in a single step

•Computationally prohibitive for high-dim (e.g. $\mathcal{O}(10^4))!$

- •Calorimeter shower simulation is major bottleneck in LHC computational pipeline!
- •Surrogate modeling to speed up generation of expensive GEANT4 calorimeter showers
- •Most approaches directly simulate the full-dim showers (3D image) in a single step

•Computationally prohibitive for high-dim (e.g. $\mathcal{O}(10^4))!$

•Enter SuperCalo!

High-resolution

Dataset

Dataset 2 of CaloChallenge

M.F. Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih, A. Zaborowska https://doi.org/10.5281/zenodo.6366271

•Idealized calorimeter with concentric cylinders of absorber (W) and active material (Si)

• Fine voxel energies (6480-dim)

Many possible choices with no obvious best choice!

Many possible choices with no obvious best choice!

Many possible choices with no obvious best choice!

- Many possible choices with no obvious best choice!
- Experimented with **two** choices:

Choice A (red) :

1 coarse voxel = 1 r × 2 α × 5 z

Choice B (green) :

1 coarse voxel = 3 r × 4 α × 1 z

Choice B (only group in r and α) fails to capture inter-layer correlations!

Choice B (only group in r and α) fails to capture inter-layer correlations!

Generate two sets of <u>high-</u> res showers (fine voxels)

> using choices A & B respectively

Choice B (only group in r and α) fails to capture inter-layer correlations!

Generate two sets of highres showers (fine voxels)

using choices A & B respectively

Choice B (only group in r and α) fails to capture inter-layer correlations!

Generate two sets of highres showers (fine voxels)

using choices A & B respectively

Choice B (only group in r and α) fails to capture inter-layer correlations!

Generate two sets of <u>high-</u> res showers (fine voxels) using choices A & B respectively

Choice B (only group in r and α) fails to capture inter-layer correlations!

7

Coarse voxel model

Can use any generative model architecture! We used MAF here

Coarse voxel model

Can use any generative model architecture! We used MAF here

Coarse voxel model

Can use any generative model architecture! We used MAF here

Histograms of HLFs

Total deposited energy per layer

Shower shape (center of energy)

Histograms of HLFs

Shower shape (center of energy)

Histograms of HLFs

- optimal classifier cannot distinguish between two datasets
- SuperCalo and Geant4 samples.

•According to Neyman-Pearson lemma, we have $p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$ if

•Trained binary classifier directly on low-level (voxels) and high-level features of

optimal classifier cannot distinguish between two datasets

•Trained binary classifier directly on low-level (voxels) and high-level features of SuperCalo and Geant4 samples.

	low-level	features	high-level features		
Model	AUC JSD		AUC	JSD	
Full chain	0.726(19)	0.726(19) 0.117(19)		0.110(4)	
iCaloFlow	0.797(5)	0.210(7)	0.798(3)	0.214(5)	

ICaloFlow [2305.11934]: M. Buckley, C. Krause, IP, D. Shih

•According to Neyman-Pearson lemma, we have $p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$ if

optimal classifier cannot distinguish between two datasets

 Trained binary classifier directly on low-level (voxels) SuperCalo and Geant4 samples.

	low-level fea		
Model	AUC		
Full chain	0.726(19)	0	
iCaloFlow	0.797(5)		

iCaloFlow [2305.11934]: M. Buckley, C. Krause, IP, D. Shih

9

optimal classifier cannot distinguish between two datasets

iCaloFlow [2305.11934]: M. Buckley, C. Krause, IP, D. Shih

•According to Neyman-Pearson lemma, we have $p_{\text{GEANT4}}(x) = p_{\text{generated}}(x)$ if

ifier directly on low-level (voxels) and high-level features of

tures	high-level features			
JSD	AUC	JSD		
117(19)	0.715(3)	0.110(4)		

Number of	low-level	features	high-level features		
coarse showers	AUC	JSD	AUC	JSD	
$2 imes 10^4$	0.762(3)	0.160(4)	0.724(2)	0.119(3)	
1×10^4	0.795(4)	0.208(6)	0.738(4)	0.135(5)	
$5 imes 10^3$	0.852(4)	0.310(6)	0.759(3)	0.162(3)	
2×10^3	0.938(2)	0.556(7)	0.818(3)	0.255(6)	
1×10^3	0.980(1)	0.769(4)	0.887(4)	0.408(10)	

Number of	low-level features		high-leve		
coarse showers	AUC	JSD	AUC	JSD	
$2 imes 10^4$	0.762(3)	0.160(4)	0.724(° Cla	ssifier only fully o	catches on whe
1×10^4	0.795(4)	0.208(6)	0.738, we	start from 1000	coarse showers
5×10^3	0.852(4)	0.310(6)	0.759(3)	0 (3)	
$2 imes 10^3$	0.938(2)	0.556(7)	0.818(3)	0.255(6)	
1×10^3	0.980(1)	0.769(4)	0.887(4)	0.408(10)	

Generation Timing

Generation Timing

Factor of ~1.9 speedup compared to iCaloFlow MAF

10³

Generation Timing

Conclusions and Outlook

- 0 similar architecture
- SuperCalo generates high-dim showers with substantial variation
- SuperCalo approach can be generalized to any generative model architecture

• Generate high-dim showers by upsampling coarse showers with SuperCalo

Achieved $\mathcal{O}(10^3)$ speedup vs GEANT4 and ~1.9 speedup vs approach with

Thank you!

Backup

Normalizing Flows

Density estimation, p(x)

Normalizing Flows

Sample generation

Normalizing Flows

Density estimation, p(x)

Conditional inputs

- 1. Incident energy of the incoming particle, E_{inc}
- 2. Deposited energy in coarse voxel i, $E_{\text{coarse},i}$
- 3. Fine layer energies of layers spanned by coarse voxel i
- 4. Deposited energy in neighboring coarse voxels in α , r and z directions
- 5. One-hot encoded coarse layer number
- 6. One-hot encoded coarse radial bin

Architecture and training

- MAF-RQS flows for all models
- Noise added to voxels during training • Uniform random of noise [0, 1] keV
- LR schedule: <u>OneCycle LR</u>

	dim of	number of	layer sizes			number of	RQS
Model	base distribution	MADE blocks	input	hidden	output	RQS bins	tail bound
FLOW-1	45	8	256	1×256	1035	8	14
Flow-2	648	8	648	1×648	14904	8	6
SuperCalo A	10	8	128	2×128	230	8	14
SuperCalo B	12	8	128	2×128	276	8	14

Pre-processing

- Flow-1
 - ^o Log-transformed E_{inc} (E_{inc} normalized by constant)
- Flow-2

 - o **Log**-transformed $E_{\text{laver},i}^{(\text{coarse})} \to \frac{1}{4} \log_{10} \left(E_{\text{layer},i}^{(\text{coarse})} \right)$

 $E_{\rm inc} \to \log_{10} \frac{E_{\rm inc}}{10^{4.5} \text{ MeV}} \in [-1.5, 1.5].$

• Logit-transformed $E_{\text{layer},i}$ ($E_{\text{layer},i}$ normalized by constant) $E_{\text{layer},i} \rightarrow x_i \equiv (E_{\text{layer},i} + \text{rand}[0, 5 \text{ keV}])/65 \text{ GeV}$ $y_i = \log \frac{u_i}{1 - u_i}, \quad u_i \equiv \alpha + (1 - 2\alpha)x_i,$

• Log-transformed $E_{\text{coarse},i}$ ($E_{\text{coarse},i}$ normalized by constant) $E_{\text{coarse},i} \rightarrow \log_{10} ((E_{\text{coarse},i} + \text{rand}[0, 5 \text{ keV}])/E_{\text{coarse},max}) + 6$

Pre-processing

- SuperCalo
 - **Logit**-transformed $E_{\text{coarse},i}$ ($E_{\text{coarse},i}$ normalized by constant)
 - **Logit**-transformed e_{ij} (e_{ij} normalized by $E_{\text{coarse},i}$)

 $\begin{aligned} E_{\text{coarse},i} \to \tilde{x}_i &\equiv (E_{\text{coarse},i} + \text{rand}[0, 1 \text{ keV}])/E_{\text{coarse},\text{max}} \\ \text{d by constant} \end{pmatrix} \quad \tilde{y}_i &= \log \frac{\tilde{u}_i}{1 - \tilde{u}_i}, \quad \tilde{u}_i \equiv \alpha + (1 - 2\alpha)\tilde{x}_i \end{aligned}$

$$e_{\text{fine},ij} \rightarrow \hat{x}_{ij} \equiv (e_{\text{fine},ij} + \text{rand}[0, 0.1 \text{ keV}])/E_{\text{coarse,i}}$$

$$\hat{y}_{ij} = \log \frac{\hat{u}_{ij}}{1 - \hat{u}_{ij}}, \quad \hat{u}_{ij} \equiv \alpha + (1 - 2\alpha)\hat{x}_{ij}$$

