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*Calorimeter shower simulation is major bottleneck in LHC computational pipeline!
*Surrogate modeling to speed up generation of expensive GEANT4 calorimeter showers

*Most approaches directly simulate the full-dim showers (3D image) in a single step

Fast calorimeter

generative model

-Computationally prohibitive for high-dim (e.g. ©(10%))!

Enter SuperCalo!
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Main idea!
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Main idea!

© Fine voxel index j

l Weight sharing across all

alc coarse voxels

‘We learn this with a single Masked
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Dataset 2 of CaloChallenge g,

M.F. Giannelli, G. Kasieczka, C. Krause, B. Nachman, D. Salamani, D. Shih, A. Zaborowska
https://doi.org/10.5281/zen0do.636627 1

|dealized calorimeter with concentric cylinders
of absorber (W) and active material (Si)

—20 1

—40 1

Geometry: Format:

* 45 |ayers (2) Total 100k ¢~ showers
* |ncident energy (1-dim) ~ [1 GeV, 1 TeV]

* 16 angular (a) bins

. . e Fine voxel energies (6480-dim
* 9 radial (r) bins gies | )
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Coarse voxelization

« Many possible choices with no obvious best choice!

* Experimented with two choices:

Choice A (red):

1coarsevoxel=1rx2a x5z

Choice B (green) :

1 coarsevoxel=3rx4ax1z




Comparing coarse voxelization choices

Choice B (only group in r and a) fails to capture inter-layer correlations!




Comparing coarse voxelization choices

Choice B (only group in r and a) fails to capture inter-layer correlations!

Generate two sets of high-
res showers (fine voxels)
using choices A & B
respectively




Comparing coarse voxelization choices

Choice B (only group in r and a) fails to capture inter-layer correlations!

Generate two sets of high-

res showers (fine voxels) o :
using choices A & B ompute p

respectively

> () | 2 (nt+l)
eﬁne eﬁne

> )| | g m+])
eﬁne eﬁne




Comparing coarse voxelization choices

Choice B (only group in r and a) fails to capture inter-layer correlations!

Generate two sets of high-

res showers (fine voxels)
using choices A & B
respectively

-

Compute p

> (), 2 (n+l)

_ eﬁne ' eﬁne
> )| | g m+])
eﬁne eﬁne

Dot product of fine

voxels contained in
adjacent layers™®




Comparing coarse voxelization choices

Choice B (only group in r and a) fails to capture inter-layer correlations!

Generate two sets of high-
res showers (fine voxels)
using choices A & B
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Comparing coarse voxelization choices

Choice B (only group in r and a) fails to capture inter-layer correlations!

Generate two sets of high-
res showers (fine voxels)

using choices A & B Compute p
respectively
o () g (nt+l) |
10%¢ _ fine “fine Dot product of fine
: B Dataset 2 /0 — | tained
1 SupPERCALO A - (n) - (n+1) VOXGI S contained In
1 SupErRCALO B €fine | | €fine adjacent layers*

Stick with Choice A for

rest of talk!

Normalized counts







100k
low-resolution
showers

Coarse voxel model




100k
low-resolution
showers

Coarse voxel model

Can use any generative
model architecture!
We used MAF here




Coarse voxel model

Can use any generative
model architecture!
We used MAF here

100k
low-resolution
showers

SuperCalo




Coarse voxel model

Can use any generative
model architecture!
We used MAF here

100k
low-resolution
showers

SuperCalo

100k
high-resolution
showers




Histograms of HLFs
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Histograms of HLFs
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Histograms of HLFs

Total deposited energy per layer
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Classifier test

-According to Neyman-Pearson lemma, we have pgeant4(X) = Pgenerated(X) if
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* [rained binary classifier directly on low-level (voxels) and high-level features of
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-According to Neyman-Pearson lemma, we have pgeant4(X) = Pgenerated(X) if

optimal classifier cannot distinguish between two datasets

* Trained binary classifier directly on low-level (voxe
SuperCalo and Geant4 samples.

amlcvel| features of

All AUC and JSD < 1
——>High-fidelity samples

low-level features
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Classifier test

-According to Neyman-Pearson lemma, we have pgeant4(X) = Pgenerated(X) if
optimal classifier cannot distinguish between two datasets

\fier directly on low-level (voxels) and high-level features of

Better performance compared to 4 Samples.

another MAF-based model

low-level features high-level features

MON AUC JSD AUC JSD

Full chair§| 0.726(19) | 0.117(19) | 0.715(3) | 0.110(4)
iCALOFLOW 0.797(5) 0.210(7) 0.798(3) 0.214(5)

iCaloFlow [2305.11934]: M. Buckley, C. Krause, IP, D. Shih
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Variation study

How much variation do we get from upsampling?

Number of low-level features high-level features
coarse showers AUC JSD AUC JSD
2 x 10* 0.762(3) | 0.160(4) | 0.724(2) | 0.119(3)
1 x 10 0.795(4) | 0.208(6) | 0.738(4) | 0.135(5)
5 x 10° 0.852(4) | 0.310(6) | 0.759(3) | 0.162(3)
2 x 10° 0.938(2) | 0.556(7) | 0.818(3) | 0.255(6)
1 x 103 0.980(1) | 0.769(4) | 0.887(4) | 0.408(10)
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Variation study

How much variation do we get from upsampling?

Number of low-level features high-level features

coarse showers AUC JSD AUC JSD

4 (g
2x 10 00762(3) 0. 160(4) 0.72 Classifier only fully catches on when
1 x 10% 0.795(4) 0.208(6) &L, We start from 1000 coarse showers!

5 x 10° 0.852(4) | 0.310(6) | 0.759(3) | Q
2 x 10° 0.938(2) | 0.556(7) | 0.818(3) # 0.255(6)
1 x 10° 0.980(1) | 0.769(4) | 0.887(4) | 0.408(10)
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Additional
speedup by
resampling low-res
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Conclusions and Outlook

o (Generate high-dim showers by upsampling coarse showers with SuperCalo

o Achieved 0(10°%) speedup vs GEANT4 and ~1.9 speedup vs approach with
similar architecture

o SuperCalo generates high-dim showers with substantial variation

o SuperCalo approach can be generalized to any generative model
architecture

12



Thank you!
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z~/Z

Normalizing Flows

ﬁ Bijective transformation f ﬁ

det S

p(x) = #(f(x))

where f(x) =z

Density estimation, p(x)

Sample generation

ox

Data space
with more complex distribution
X~ X

Needs to be tractable!
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Conditional inputs

Incident energy of the incoming particle, £; .

Deposited energy in coarse voxel 1, £, ;

Fine layer energies of layers spanned by coarse voxel 1
Deposited energy in neighboring coarse voxels in a, r and z directions

One-hot encoded coarse layer number

I

One-hot encoded coarse radial bin

16



Architecture and training

 MAF-RQS flows for all models
* Noise added to voxels during training

o Uniform random of noise [0, 1] keV

* LR schedule: OneCycle LR

dim of number of layer sizes number of| RQS
Model base distribution| MADE blocks |input | hidden |output | RQS bins |tail bound
FLow-1 45 8 256 |1 x 256| 1035 8 14
FLOW-2 648 8 648 |1 x 648| 14904 8 6
SUPERCALO A 10 8 128 (2 x 128| 230 8 14
SUPERCALO B 12 8 128 |2 x 128| 276 8 14
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Pre-processing

e Flow-1
Einc

Einc — loglo 104.5 MeV

€ [—1.5,1.5].

© Log-transformed E. . (£ . normalized by constant)

O Logit-transformed Elayer ; (Elayer : normalized by constant) Eiayeri = i = (Elayer,i +rand[0, 5 keV])/65 GeV

U;

y; = log — u;, = a+ (1 —2a)x;,
* Flow-2
O Log-transformed £, . i (Eoare ; NOrMalized by constant) Ecoase,: = 1010 (Bcossse,i + rand(0,5 keV])/ Eeoarse max) +6
- (coarse) (coarse) 1 (coarse)
o Log-transformed Elayer,i Ejepr) = 7 logag ( Eleos )
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Pre-processing

e SuperCalo

Ecoarse,i —Z; = (Ecoarse,z' + rand[O, 1 kev])/Ecoal‘se,max

O it- . . ' . L . 8
Logit-transformed £ ,;ce ; (Ecoarse ; NOrmMalized by constant)  j — = at (1- 208

I : ine.ij — Lij = (€fine,ij + rand|0, 0.1 keV])/Ecoarse.i
O Logit-transformed €;; (el-j normalized by £ ... ;) fine,ij — Tij = (€fine,i; + rand| eV])/ |

uij

§i; = log 1= Uij = a+ (1 — 2a) 245
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