

Weakly Supervised Training for Optimal Transport Pileup Mitigation Strategies at Hadron Colliders

Nathan Suri, Vinicius Mikuni ML4Jets 2023

Charged + neutral pileup

Full Event

 $\mathcal{L} = \text{SWD}(x'_p, x_{np}) + \lambda \operatorname{MSE}(p_{\mathrm{T}}^{\mathrm{miss}}(x'_p), p_{\mathrm{T}}^{\mathrm{miss}}(x_{np}))$

$\mathcal{L} = \text{SWD}(x'_p, x_{np}) + \lambda \operatorname{MSE}(p_{\mathrm{T}}^{\mathrm{miss}}(x'_p), p_{\mathrm{T}}^{\mathrm{miss}}(x_{np}))$

$$\mathcal{L} = \mathrm{SWD}(x'_p, x_{np})$$

- Wasserstein distance (WD): Finds the transport function that keeps hard scattering particles and removes those from simultaneous vertices
- Sliced WD to compensate for poor scaling of computational costs of calculating WD at high dimensions

- Mean Square Error of missing p_T
 - Lambda denotes the importance of the MET regularization

 $+ \lambda \operatorname{MSE}(p_{\mathrm{T}}^{\mathrm{miss}}(x'_{p}), p_{\mathrm{T}}^{\mathrm{miss}}(x_{np}))$

- Outperforms traditional and ML-based alternatives
- + Relies on full event topologies
- + Robustly learns pileup characteristics as a transport function

Requires direct matching of events

-

Overall limited due to supervision

CET Time

How can we improve TOTAL's flexibility?

Reduce supervision!

- 1. For each event, pileup and non-pileup particles are sampled from separate Gaussian distributions
 - a. Means are uniformly sampled from a range of values
- 2. Pure event copied and zero-padded from full event
- 3. Mixed Training: Non-pileup data in full event resampled from the originally specified distributions

What happens if we do not require direct matching?

Original

Toy Example

How can we mitigate the information loss of not matching events?

Original

 $[n_{\text{batch}} x \, n_{\text{particles}} x \, n_{\text{features}}]$

Batch [event: {particles}] [event: {particles}]

Batch [event: {particles}] [event: {particles}]

...

...

Batch [event: {particles}] [event: {particles}]

...

Enhanced

 $[(n_{batch} \times n_{particles}) \times n_{features}]$

Batch [event ensemble: {particles}]

Batch [event ensemble: {particles}]

Batch [event ensemble: {particles}]

Toy Example

What happens if we decrease the purity of the non-pileup sample?

Physics Example: High p_T Jets

- PUMML Dataset: <u>https://zenodo.org/records/2652</u> 034
- Datasets
 - mH_Mu140: Set PV count, varied scalar mass
 - Mu_mH500: Varied PV count, set scalar mass
 - PV: 130-141

Physics Example: High p_T Jets

 $\mathcal{L} = \text{SWD}(x'_p, x_{np}) + \lambda \text{MSE}(E_T(x'_p), E_T(x_{np}))$

Key Takeaways

2

ΔTOTAL represents efforts to increase the flexibility without sacrificing performance

Having removed the supervision of event matching, Δ TOTAL only requires matching ensembles of events.

Initial results show promise in pursuing weak supervision

3

Toy studies show the potential power of Δ TOTAL in moving towards a weakly supervised context. Current physics results show equal performance to leading conventional strategies, but more gains are to be expected.

TOTAL is a completely data-driven pileup mitigation technique

While competing ML methods require particle-level truth and reco matching, TOTAL only requires a match between events with and without pileup.

Backup Slides

Charged Hadron Subtraction

$$\mathcal{L} = \text{SWD}(x'_p, x_{np}) + \lambda \operatorname{MSE}(p_{\mathrm{T}}^{\mathrm{miss}}(x'_p), p_{\mathrm{T}}^{\mathrm{miss}}(x_{np}))$$

Modification for jet-based dataset (PUMML)

 $\mathcal{L} = \text{SWD}(x'_p, x_{np}) + \lambda \text{MSE}(E_T(x'_p), E_T(x_{np}))$

ATLAS Fill Luminosity

Toy Example: Contamination Ratio Test

Result with SWD turned off (only E_T)