PELICAN

PERMUTATION- AND LORENTZ-EQUIVARIANT NETWORKS FOR PARTICLE PHYSICS

Alexander Bogatskiy, <u>Timothy Hoffman</u>, Xiaoyang Liu, David W. Miller, Jan T. Offermann ML4Jets: November 4th, 2023

Overview

Architecture Summary
Tagging and Vector Reconstruction
Small Parameter Limit

Symmetries as a Fundamental Orientation

- Lorentz and permutation symmetries are fundamentally important to jet physics
- Begin with a jet J, and its constituent four-vectors p_i
- Use the full set of natural Lorentz invariants $p_i \cdot p_j$ as building blocks
- Use particle-index permutation-equivariance tensors B_{ijkl} as fundamental network operations

Lorentz Equivariance

- Construct Lorentz-scalars (particle ID) and vectors (intermediate particles)
- Target Lorentz-scalars: $f(\{p_i\}) = I(\{p_i \cdot p_j\})$
- Target Lorentz-vectors: $f^{\mu}(\{p_i\}) = \sum_{i} I_k(\{p_i \cdot p_j\})p_k^{\mu}$

- 15 permutation equivariant linear maps of matrices into matrices
- 5 maps of matrices into vectors
- 2 maps of matrices into scalars

- 15 permutation equivariant linear maps of matrices into matrices
- 5 maps of matrices into vectors
- 2 maps of matrices into scalars

Identity $\delta_{ik}\delta_{jl}(p_i \cdot p_j) = p_k \cdot p_l$

•		
	•	
•		
		٠

			1	
•	•			

•	•	٠		
			•	٠
			\square	
•	٩			

•	٠	٠	٠
•	٠	•	٠

•		٠		
	٠		٠	
٠		•		
	٠		٠	

- 1			
	٠		
		٠	
			•

•

- 15 permutation equivariant linear maps of matrices into matrices
- 5 maps of matrices into vectors
- 2 maps of matrices into scalars

Identity $\delta_{ik}\delta_{jl}(p_i \cdot p_j) = p_k \cdot p_l$

•		
	•	
•		
		٠

			1	
•	•			

•	•	٠		
			•	٠
			\square	
•	٩		I	

•	•	•	•
•	٠	•	٠

•		٠		
	٠		٠	
٠		•		
	٠		٠	

- 1			
	٠		
		٠	
			•

•

- 15 permutation equivariant linear maps of matrices into matrices
- 5 maps of matrices into vectors
- 2 maps of matrices into scalars

Identity $\delta_{ik}\delta_{jl}(p_i \cdot p_j) = p_k \cdot p_l$

•			
	•		
•			
		٠	

			1	
•	•			

	Г
٠	
•	

•	•	•	•
•	٠	•	٠

•		٠		
	٠		٠	
٠		٠		
	٠		٠	

- 1			
	٠		
		٠	
			•

•

- 15 permutation equivariant linear maps of matrices into matrices
- 5 maps of matrices into vectors
- 2 maps of matrices into scalars

Tagging

• Target Lorentz-scalars: $f(\{p_i\}) = I(\{p_i \cdot p_j\})$

- Hadronic top-jet vs. QCD background jets
- SOTA performance at all orders of parameters!

Multiclass jet dataset (q, g, W, Z, t)

Architecture	Gluon	Light quark	W-boson	Z-boson	Top quark	# Params	Architecture	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.3)$	$1/\epsilon_B \ (\epsilon_S = 0.5) $ #
JEDI-net PCT LorentzNet PELICAN	0.9529 0.9623 0.9681(3) 0.9693(1)	0.9301 0.9414 0.9479(4) 0.9493(1)	AUC 0.9739 0.9789 0.9837(2) 0.9840(1)	0.9679 0.9814 0.9813(3) 0.9816(1)	0.9683 0.9757 0.9793(3) 0.9803(1)	34k 193k 224k 208k	Not IRC-safe, w/ PID PFN-ID[24] ParticleNet-ID[50] ABCNet[26] LorentzNet[26] ParT _{full} [35] PELICAN _{PID}	- 0.840 0.840 0.844 0.849 0.8555(2)	0.9052(7) 0.9116 0.9126 0.9156 0.9203 0.9247(3)	$-98.6 \pm 1.3118.2 \pm 1.5110.2 \pm 1.3129.5 \pm 0.9134.8 \pm 1.8$	$\begin{array}{c} 37.4 \pm 0.7 \\ 39.8 \pm 0.2 \\ - \\ 42.4 \pm 0.4 \\ 47.9 \pm 0.5 \\ 51.3 \pm 0.7 \end{array}$

Toptag dataset

Quark-gluon dataset

Four-Vector Reconstruction

• Target Lorentz-vectors: $f^{\mu}(\{p_i\}) = \sum I_k(\{p_i \cdot p_j\})p_k^{\mu}$

• Consider hadronically decaying top-quarks

Four-Vector Reconstruction

• Target Lorentz-vectors: $f^{\mu}(\{p_i\}) = \sum I_k(\{p_i \cdot p_j\})p_k^{\mu}$

• Consider hadronically decaying top-quarks

Uncontained top-daughters

12

Four-Vector Reconstruction • Target Lorentz-vectors: $f^{\mu}(\{p_i\}) = \sum I_k(\{p_i \cdot p_j\})p_k^{\mu}$

Compare to John-Hopkins W-boson reconstruction

	Method	σ_{p_T} (%)	σ_m (%)	$\sigma_{\Delta R}$ (cen
ЕS	JH	9.8 %	8.3 %	9.6
ΡH	PELICAN JH	3.6 %	2.8 %	3.1
)EL	PELICAN	6.2 %	39.6 %	5.6

Reconstruction as a Tagger

• Start with mixed bag of top-quark and QCD jets: classify \rightarrow vector reconstruction

True Signal True Background

Reconstruction as a Tagger

- Can cut on assumed reconstructed "W-boson" as a tagger!

True Background True Signal

• Start with mixed bag of top-quark and QCD jets: classify \rightarrow vector reconstruction

Small Model Limit: nanoPELICAN

- Interpretability is crucial in particle physics
- Construct smallest viable models

Small Model Limit: nanoPELICAN

- Interpretability is crucial in particle physics
- Construct smallest viable models
- Reduce to a single hidden layer
- $p_i \cdot p_j$ is traceless and symmetric
- Only 6 aggregators remain

nanoPELICAN

• Only 6 aggregators remain

nanoPELICAN

• Only 6 aggregators remain

Accuracy:91.8%AUC:97.2%Parameters:19

Conclusions

- scalar and Lorentz-vector targets
- Relatively performant even with O(10) parameters! • Gives hope for full PELICAN interpretability

Many prospects for future applications!

- Fast tagging and other online analyses
- Explainable energy calibration
- Particle helicity measurements
- Track reconstruction
- Astrophysics applications

PELICAN achieves SOTA performance with explainable outputs on Lorentz-

High-precision jet-containment measurements for offline analysis

Thanks!

PELICAN paper NanoPELICAN paper PELICAN codebase nanoPELICAN codebase Data generation codebase

Alexander Bogatskiy Timothy Hoffman

David W. Miller

FLATIRON

Xiaoyang Liu

ENRICO FERM

Backup

More Classification

Multiclass

Architecture	Gluon	Light quark	W-boson	Z-boson	Top quark	# Params		
			AUC					
JEDI-net	0.9529	0.9301	0.9739	0.9679	0.9683	34k		
PCT	0.9623	0.9414	0.9789	0.9814	0.9757	193k		
LorentzNet	0.9681(3)	0.9479(4)	0.9837(2)	0.9813(3)	0.9793(3)	224k		
PELICAN	0.9693(1)	0.9493(1)	0.9840(1)	0.9816(1)	0.9803(1)	208k		
TPR at FPR=0.10								
JEDI-net	0.878(1)	0.822(1)	0.938(1)	0.910(1)	0.930(1)	34k		
PCT	0.891(1)	0.833(1)	0.932(1)	0.946(1)	0.941(1)	193k		
LorentzNet	0.912(1)	0.855(1)	0.952(1)	0.939(1)	0.949(1)	224k		
PELICAN	0.916(1)	0.860(1)	0.953(1)	0.940(1)	0.951(1)	208k		
TPR at FPR=0.01								
JEDI-net	0.485(1)	0.302(1)	0.704(1)	0.769(1)	0.633(1)	34k		
PCT	0.513(2)	0.298(2)	0.834(1)	0.781(1)	0.700(3)	193k		
LorentzNet	0.557(4)	0.319(2)	0.800(3)	0.850(3)	0.753(3)	224k		
PELICAN	0.567(1)	0.320(1)	0.804(1)	0.850(1)	0.761(1)	208k		

Quark-gluon

Architecture	Accuracy	AUC	$1/\epsilon_B \ (\epsilon_S = 0.3)$	$1/\epsilon_B \ (\epsilon_S = 0.5)$	# Params
Not IRC-safe, w/ PID					
PFN-ID[24]	_	0.9052(7)	_	37.4 ± 0.7	82k
ParticleNet-ID[50]	0.840	0.9116	98.6 ± 1.3	39.8 ± 0.2	498k
ABCNet[26]	0.840	0.9126	118.2 ± 1.5	_	230k
LorentzNet[26]	0.844	0.9156	110.2 ± 1.3	42.4 ± 0.4	220k
ParT _{full} [35]	0.849	0.9203	129.5 ± 0.9	47.9 ± 0.5	2.1M
PELICANPID	0.8555(2)	0.9247(3)	134.8 ± 1.8	51.3 ± 0.7	211k
Not IRC-safe, w/o PID					
PFN[24]	_	0.8911(8)	_	30.8 ± 0.4	82k
ParticleNet[50]	0.828	0.9014	85.4	33.7	498k
PELICAN	0.8342(2)	0.9059(8)	88.9 ± 0.5	36.0 ± 0.2	209k
IRC-safe					
EFN[24]	_	0.8824(5)	_	28.6 ± 0.3	82k
EFP[18]	_	0.8919	_	29.7	1k
EMPN[55]	_	0.8932(6)	_	30.8 ± 0.2	~110k
PELICANIRC	0.8299(3)	0.8955(18)	85.7 ± 1.2	33.8 ± 0.2	209k

Vector Reconstruction

Vector Reconstruction

Vector Reconstruction

Vector Reconstruction Weights

Dataset Details

