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Evaluating generative networks1 Introduction

Huge interest in generative networks:
• Improve integration techniques (e.g.MadNIS);
• Event generation;
• Hadronization models;
• Fast Calorimeter Challenge 2022 [link]
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Evaluating generative networks1 Introduction

• Classifiers are the best tools we have to test our generative networks;
• the output approximates the quantity:

C(x) =
ptrue(x)

ptrue(x) + pmodel(x)
−→ ptrue

pmodel
(x) =

C(x)
1 − C(x)

• Optimal observable for a two hypothesis test according to the Neyman-Pearsonlemma
• Proper training is essential: architecture, over-fitting, calibration, . . .
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Toy example with JetNet2 Jet distortions

JetNet example, apply distortions to the jetmass as in [1]:
• smear: smear with a Gaussian with
µ = 1 and σ = 0.25;

• shift: shift with a Gaussian with
µ = 1.1 and σ = 0.05.

• tailcut: remove the tail for M > 0.17; 0.00 0.05 0.10 0.15 0.20
M [a.u.]
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Train a ParticleNet-Lite classifier with 100k jets, validation on 50k jets.
[1] Kansal et al., arXiv:2211.10295
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Toy example with JetNet2 Jet distortions

• Area Under the Curve (AUC) is notinformative, AUC = 0.495;

• calculate and histogram the weightdistribution;
• classifier builds an approx. ptrue/ptailcut;
• look at the w tail with clustering.
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Toy example with JetNet2 Jet distortions
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Geant4 vs GAN/VAE/NF/DM3 Fast calorimeter simulations

• much harder problem, 100k samples/O(500)voxels;
• high-dimensional density estimation;
• train on "low-level" features;
• based on caloGAN[2] data: e+, γ, π showers;
• architecture→ see Florian’s talk.

η
z

φ

[2] CaloGAN, Paganini et al.
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Geant4 vs GAN/VAE/NF/DM3 Fast calorimeter simulations
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Look back at CaloFlow4 A CaloINN example

• Original CaloFlow [3] is less performingon e+;
• physics of these showers should besimpler compared to π+;
• understand the problem with aclassifier→ find a solution.

Krause C., Shih D., arXiv:2105.05285
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Look back at CaloFlow4 A CaloINN example
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• Clear clustering for large energydepositions;
• those showers penetrate the entiredetector;
• the last layer has the lowest fraction ofenergy deposited;
• is there something introducing a bias?
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Noise injection4 A CaloINN example

• Normalize by the energy:
• add some kind of noise;
• introduce energy encoding in newvariables;
• . . .

• order in which we apply them isimportant!
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Noise injection4 A CaloINN example
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AUC: 0.86(1) → 0.525(5)

17/18 Understanding Generative Networks ML4Jets 2023 - Hamburg (DESY) November 9, 2023



Conclusions5 Conclusions
• Classifiers can systematically find all the failure modes of a generative model;
• we can easily extract weights from properly trained classifiers→ pdata/pmodel;

• I did not address reweighting*;
• we can still learn from the weight distribution of a classifier;
• the best tool to evaluate any surrogate ML model.

*See. ELSA, arXiv:2305.07696Outlook:
• Can we develop classifiers tailored for high-dimensional fast calorimeter simulations?

Thanks for your attention!
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Backup



Backup6 Backup

• Add uniform noise;
• separate energy generation from shape;
• order in which we apply them isimportant! 0.0 0.5 1.0
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Classifier params.6 Backup

Parameter Calorimeter
Optimizer AdamLearning rate 2 · 10−4

LR schedule reduce on plateauDecay factor 0.1Decay patience (epochs) 10Batch size 1000Epochs 200Number of layers 3Hidden nodes 512Dropout 30%Activation function leaky ReLUTraining samples 60kValidation samples 20kTesting samples 20k



Calibration curve6 Backup
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