

Reconstructing full pp collision events with HGPflow

ML4Jets 06 November, 2023

Nilotpal Kakati, Etienne Dreyer, Eilam Gross, Marumi Kado

(nilotpal.kakati@cern.ch)

Weizmann Institute of Science

Weizmann Institute of Science

Forward problem

Weizmann Institute of Science

Weizmann Institute of Science

Inverse problem

collision/simulation

Detector data (Cells, tracks,...)

Weizmann Institute of Science

Reconstructed Particles

Detector data (Cells, tracks,...)

Weizmann Institute of Science

Reconstructed Particles

Detector data (Cells, tracks,...)

Weizmann Institute of Science

Detector data (Cells, tracks,...)

Weizmann Institute of Science

Detector data (Cells, tracks,...)

Weizmann Institute of Science

Prediction

Weizmann Institute of Science

Hypergraph

Weizmann Institute of Science

Hypergraph

Nodes

Weizmann Institute of Science

Hyperedges

Bipartite graph

Hypergraph

Nodes

Weizmann Institute of Science

Hyperedges

Hyperedges

Bipartite graph

Incidence matrix

Event Reconstruction as a Hypergraph learning problem

Prediction

Event Reconstruction as a Hypergraph learning problem

Weizmann Institute of Science

Prediction

Event Reconstruction as a Hypergraph learning problem

Weizmann Institute of Science

Prediction

Softmax

Weizmann Institute of Science

Weizmann Institute of Science

• E = E1 + E2 = 15GeV

• E = E1 + E2 = 15GeV

Weizmann Institute of Science

$$\eta = \frac{7\eta_1 + 8\eta_2}{15}$$

 \bullet

• E = E1 + E2 = 15GeV

Weizmann Institute of Science

$$\eta = \frac{7\eta_1 + 8\eta_2}{15}$$

 \bullet

$$\bullet \quad \phi = \frac{7\phi_1 + 8\phi_2}{15}$$

• E = E1 + E2 = 15GeV
•
$$p_T = \frac{E}{cosh(\eta)}$$

$$\eta = \frac{7\eta_1 + 8\eta_2}{15}$$

 \bullet

$$\bullet \quad \phi = \frac{7\phi_1 + 8\phi_2}{15}$$

Weizmann Institute of Science

Detector data (Cells + tracks)

TCs + tracks

Weizmann Institute of Science

Weizmann Institute of Science

Weizmann Institute of Science

Weizmann Institute of Science

Encoding (Important for ML)

Weizmann Institute of Science

Encoding (Important for ML)

Weizmann Institute of Science

Analogous to Classical PF

(Important for ML)

Weizmann Institute of Science

Previously,

Eur. Phys. J. C (2023) 83:596 https://doi.org/10.1140/epjc/s10052-023-11677-7

Regular Article - Experimental Physics

Reconstructing particles in jets using set transformer and hypergraph prediction networks

Francesco Armando Di Bello^{1,a}, Etienne Dreyer^{2,b}, Sanmay Ganguly³, Eilam Gross², Lukas Heinrich⁴, Anna Ivina², Marumi Kado^{5,6}, Nilotpal Kakati^{2,c}, Lorenzo Santi⁶, Jonathan Shlomi², Matteo Tusoni⁶

¹ INFN and University of Genova, Genoa, Italy

² Weizmann Institute of Science, Rehovot, Israel

³ ICEPP, University of Tokyo, Tokyo, Japan

⁴ Technical University of Munich, Munich, Germany

⁵ Max Planck Institute for Physics, Munich, Germany

⁶ INFN and Sapienza University of Rome, Rome, Italy

Received: 11 December 2022 / Accepted: 4 June 2023 © The Author(s) 2023

Weizmann Institute of Science

THE EUROPEAN **PHYSICAL JOURNAL C**

https://link.springer.com/article/10.1140/epjc/s10052-023-11677-7

Previously,

Weizmann Institute of Science

https://link.springer.com/article/10.1140/epjc/s10052-023-11677-7

Kakati

Single jet (quanta) → Full event

Weizmann Institute of Science

The obvious(?) next step...

Weizmann Institute of Science

$Z(\nu\nu)H(b\bar{b})$

- From a physicist's perspective
 - The two jets are correlated and we want to exploit it

$Z(\nu\nu)H(b\bar{b})$

- From a physicist's perspective
 - The two jets are correlated and we want to exploit it
- But from a reconstruction perspective,
 - ➡ We want to avoid this correlation

$Z(\nu\nu)H(b\bar{b})$

- From a physicist's perspective
 - The two jets are correlated and we want to exploit it
- But from a reconstruction perspective,
 - ➡ We want to avoid this correlation
- ML algorithms are greedy, and can learn unwanted correlations

$Z(\nu\nu)H(b\bar{b})$

- From a physicist's perspective
 - The two jets are correlated and we want to exploit it
- But from a reconstruction perspective,
 - ➡ We want to avoid this correlation
- ML algorithms are greedy, and can learn unwanted correlations

$Z(\nu\nu)H(b\bar{b})$

Weizmann Institute of Science

Weizmann Institute of Science

Weizmann Institute of Science

Weizmann Institute of Science

HGPflow

Weizmann Institute of Science

HGPflow

Weizmann Institute of Science

HGPflow

Weizmann Institute of Science

HGPflow

Weizmann Institute of Science

Training

- Dataset
 - ➡ dijet events
 - Underlying events
 - ➡ No Pileup
 - → 12k events only (120k training examples)

Training

- Dataset +
 - ➡ dijet events
 - Underlying events
 - No Pileup
 - 12k events only (120k training examples)
- Model •
 - Much smaller model (1M parameters) for quick studies
 - No hyper-parameter optimization

Weizmann Institute of Science

Training

- Dataset ◆
 - ➡ dijet events
 - Underlying events
 - No Pileup
 - 12k events only (120k training examples)
- Model \blacklozenge
 - Much smaller model (1M parameters) for quick studies
 - No hyper-parameter optimization
- Main goal: understand splitting and stitching +

Weizmann Institute of Science

Particle level result (dijet test set)

Weizmann Institute of Science

Small model (1M) Small dataset (12k) ÷ no hyperparameter tuning

	Neut had	Photon
Neut had	10,110	8,000
Photon	5,861	46,861

Confusion matrix (neutral only)

Weizmann Institute of Science

Small model (1M) + Small dataset (12k) + no hyperparameter tuning

Results

Weizmann Institute of Science

Leading jet resolution

Small model (1M) + Small dataset (12k) + no hyperparameter tuning

More studies (out of distribution)

• No retraining (trained on dijet)

Weizmann Institute of Science

Small model (1M) + Small dataset (12k) + no hyperparameter tuning

More studies (out of distribution)

• No retraining (trained on dijet)

 $Z(\nu\nu)H(b\bar{b})$

Using leading two jets (no calibration)

Weizmann Institute of Science

Small model (1M) + Small dataset (12k) + no hyperparameter tuning

More studies (out of distribution)

• No retraining (trained on dijet)

Weizmann Institute of Science

ppflow $\mu = 1.99, \sigma = 15.32$ proxy $\mu = 0.73, \sigma = 15.53$ hgpf $\mu = 3.07, \sigma = 13.41$ 20 -20 -60-40 40 60 80 0 $p_T^{miss}Reco - p_T^{miss}Truth$ [GeV]

tt

Small model (1M) + Small dataset (12k) + no hyperparameter tuning

19

Conclusion

- HGPflow •
 - ➡ Pros: interpretability
 - Can be scaled up to full event
 - Nice performance so far! (w/o much hyper parameter optimization)
- Splitting events +
 - MSClustering seems to work well
 - Can have better ML solutions in future
- Hyperparameter optimization + larger model + larger dataset (next step) \blacklozenge
- Talk by Javier on MLPF (more about particle flow) +

Thanks!