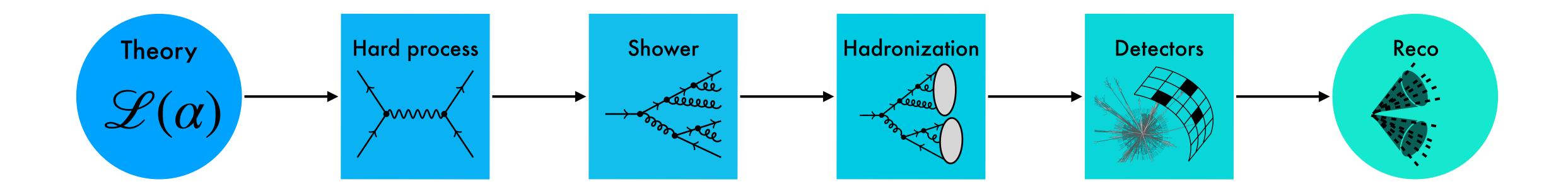


Precision-Machine Learning for the Matrix Element Method

T. Heimel, **N. Huetsch**, R. Winterhalder, T. Plehn, A. Butter arXiv: 2310.07752

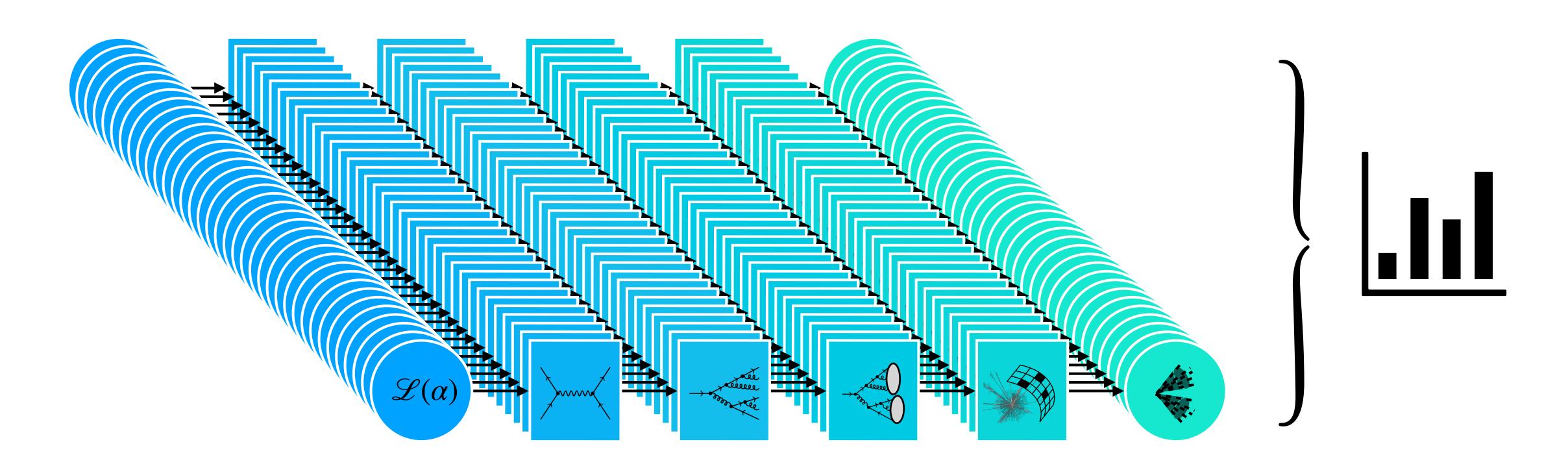
SPONSORED BY THE

From Theory to Experiment in LHC Physics



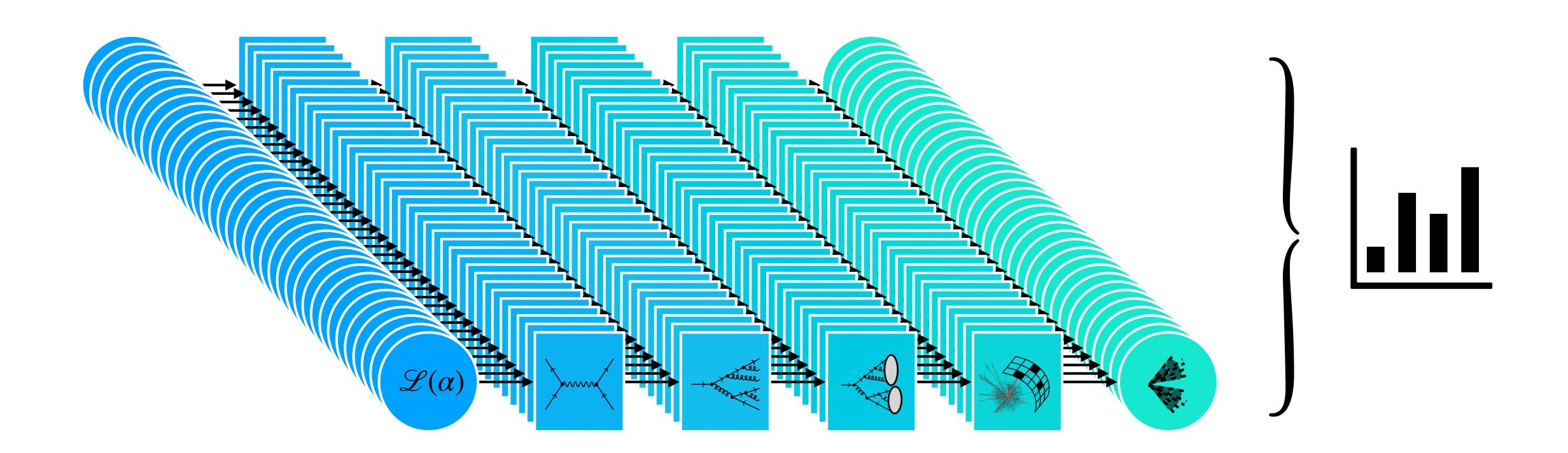
Each event undergoes reconstruction

From Theory to Experiment in LHC Physics



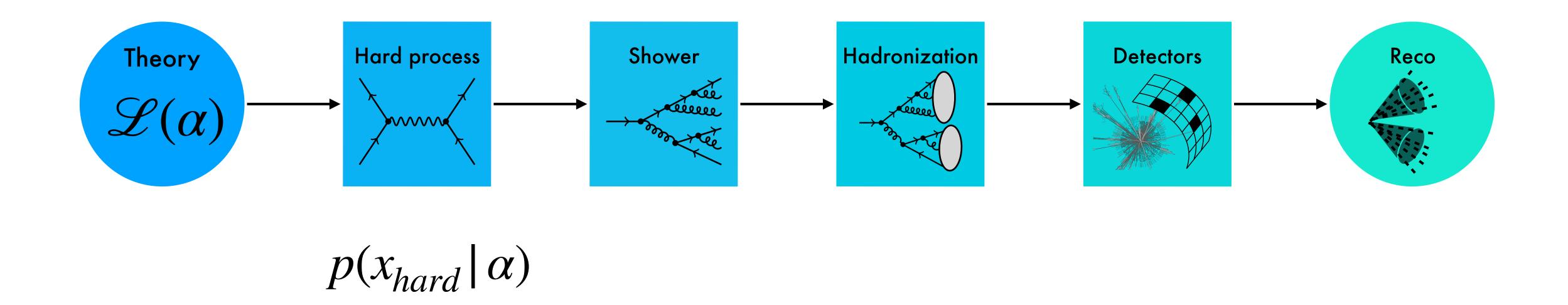
Event samples are combined into observable histogram

From Theory to Experiment in LHC Physics

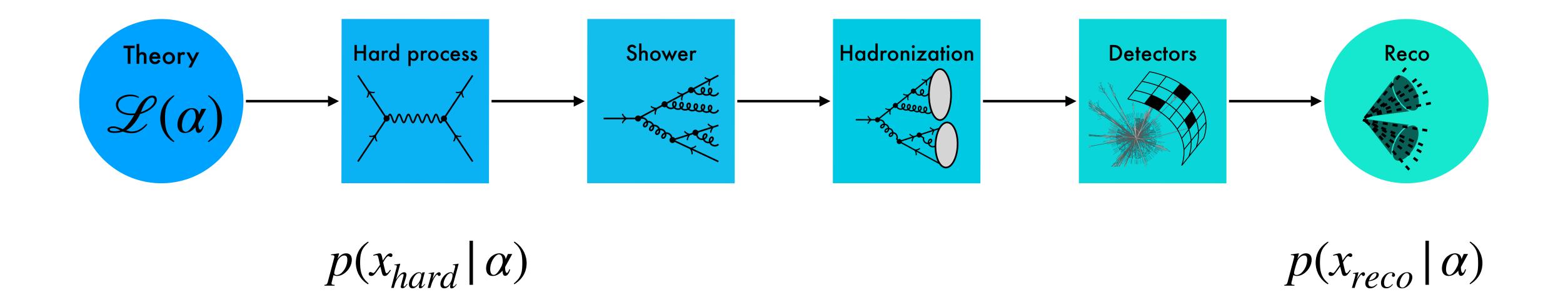


We lose a lot of information doing this!

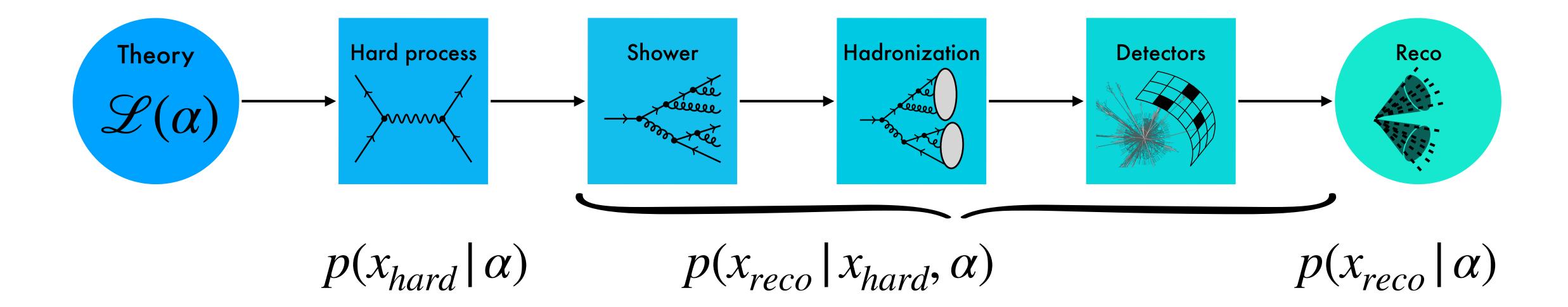
What if we could go for the likelihood instead?



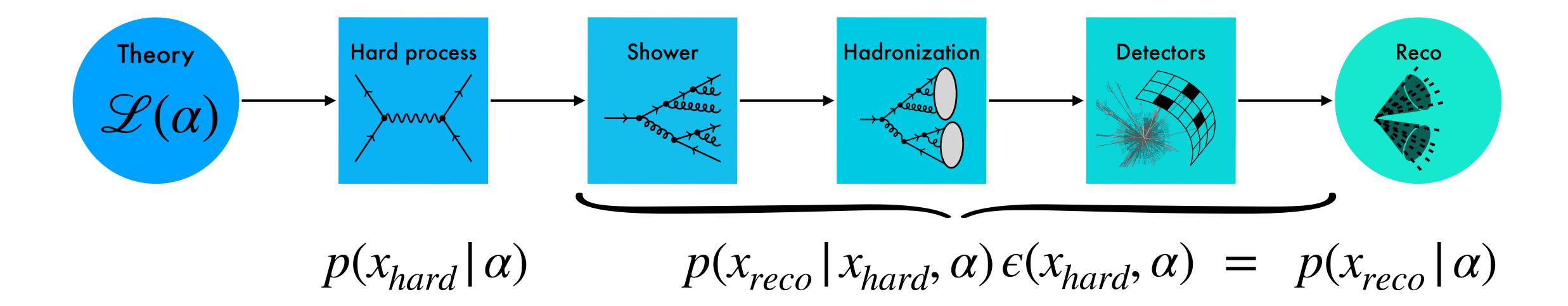
Hard-scattering level likelihood known via differential cross-section $p(x_{hard} | \alpha) = \frac{1}{\sigma(\alpha)} \frac{a \sigma(\alpha)}{dx_{hard}}$



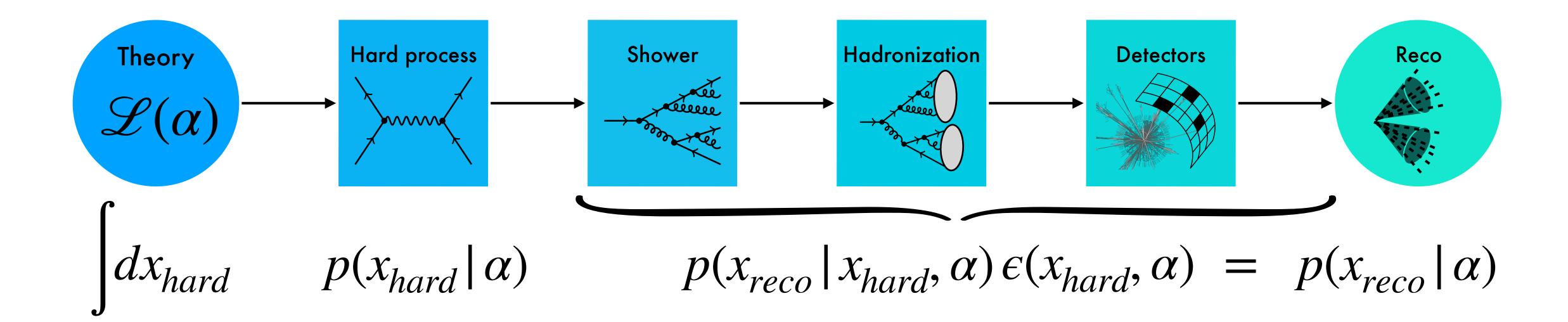
Need access to the likelihood at reconstruction level!



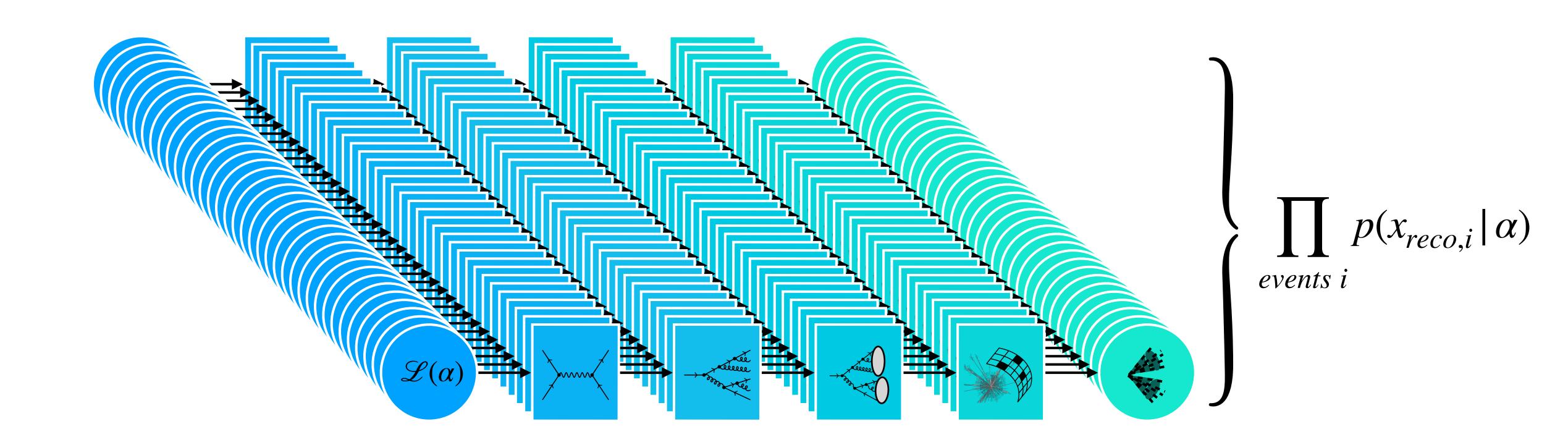
Hard-scattering and reconstruction linked by forward transfer probability



Include an efficiency term to account for acceptance of events

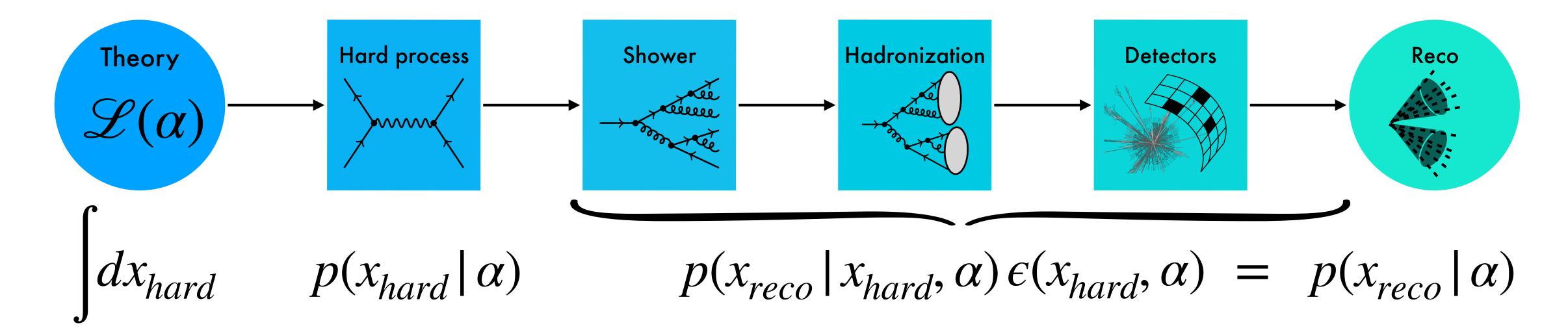


Integrate over all possible hard-scattering configurations



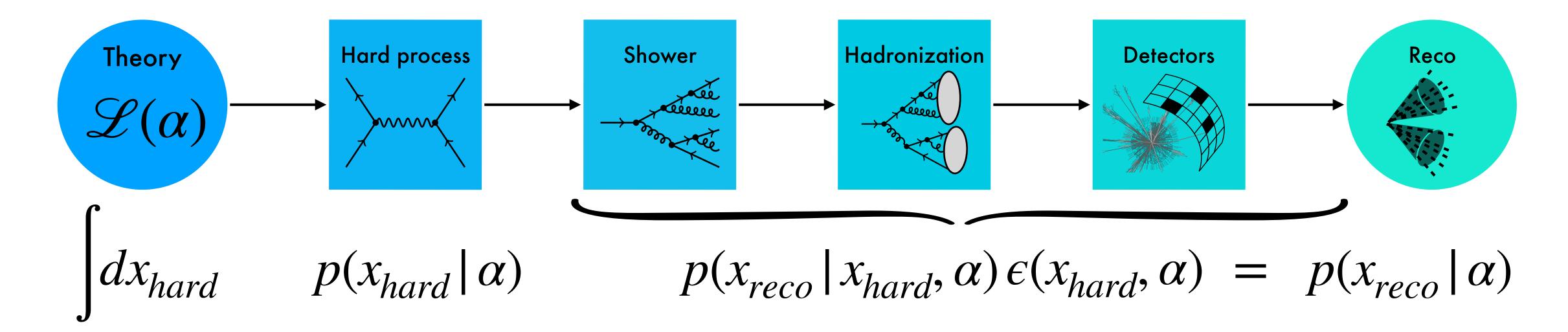
Event likelihoods are combined into sample likelihoods

The Matrix Element Method



- +++ Unbinned and multivariate by design
- +++ Optimal use of information derived from Newman-Pearson lemma
- Transfer probability and efficiency not known
- — Integral numerically very challenging

The Matrix Element Method



- +++ Unbinned and multivariate by design
- +++ Optimal use of information derived from Newman-Pearson lemma
- — Transfer probability and efficiency not known USE MACHINE LEARNING
- Integral numerically very challenging USE MACHINE LEARNING

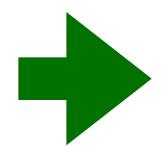
$$\int dx_{hard} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}, \alpha) \epsilon(x_{hard}, \alpha) = p(x_{reco} | \alpha)$$

$$\int dx_{hard} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard}, \alpha) = p(x_{reco} | \alpha)$$

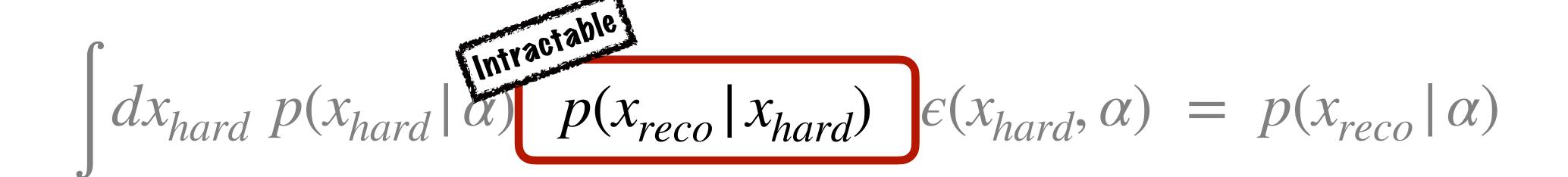
$$\int dx_{hard} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard}, \alpha) = p(x_{reco} | \alpha)$$

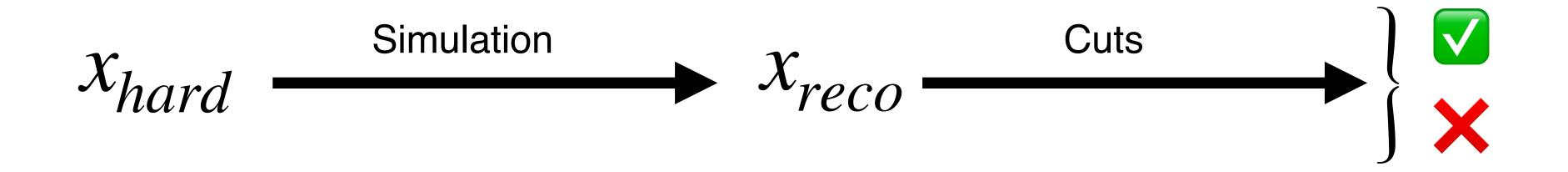
Transfer probability is analytically intractable

Transfer can be simulated to generate paired data x_{hard} , x_{reco}

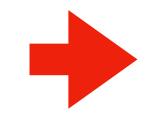


Generative Neural Network to encode the transfer probability





The transfer network is trained only on accepted pairs



Bias in the learned transfer probability $p(x_{reco} | x_{hard})$ that we need to correct!

The Acceptance Network

$$\int dx_{hard} \ p(x_{hard} | \alpha) \ p(x_{reco} | x_{hard}) \ \epsilon(x_{hard}, \alpha) = p(x_{reco} | \alpha)$$

The Acceptance Network

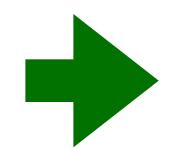
$$\int dx_{hard} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard}) = p(x_{reco} | \alpha)$$

The Acceptance Network

$$\int dx_{hard} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard}) = p(x_{reco} | \alpha)$$

Need to encode the efficiency at hard-scattering level

Transfer can be simulated to generate labeled data $x_{hard} \rightarrow x_{reco}(x_{hard}) \rightarrow \begin{cases} \checkmark \\ \checkmark \end{cases}$



Classifier Neural Network to encode the acceptance probability

The Sampling Network

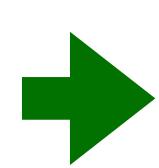
Challenging
$$\int dx_{hard} \ p(x_{hard} | \alpha) \ p(x_{reco} | x_{hard}) \ \epsilon(x_{hard}) \ = \ p(x_{reco} | \alpha)$$

The Sampling Network

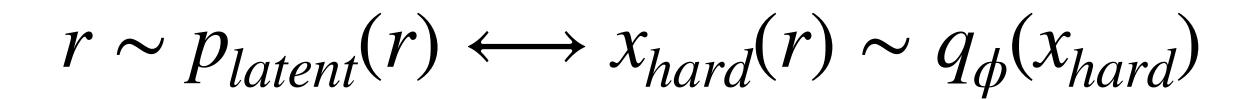
Challenging $dx_{hard} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard}) = p(x_{reco} | \alpha)$

$$= \left\langle \frac{1}{q(x_{hard})} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard}) \right\rangle_{x_{hard} \sim q(x_{hard})}$$

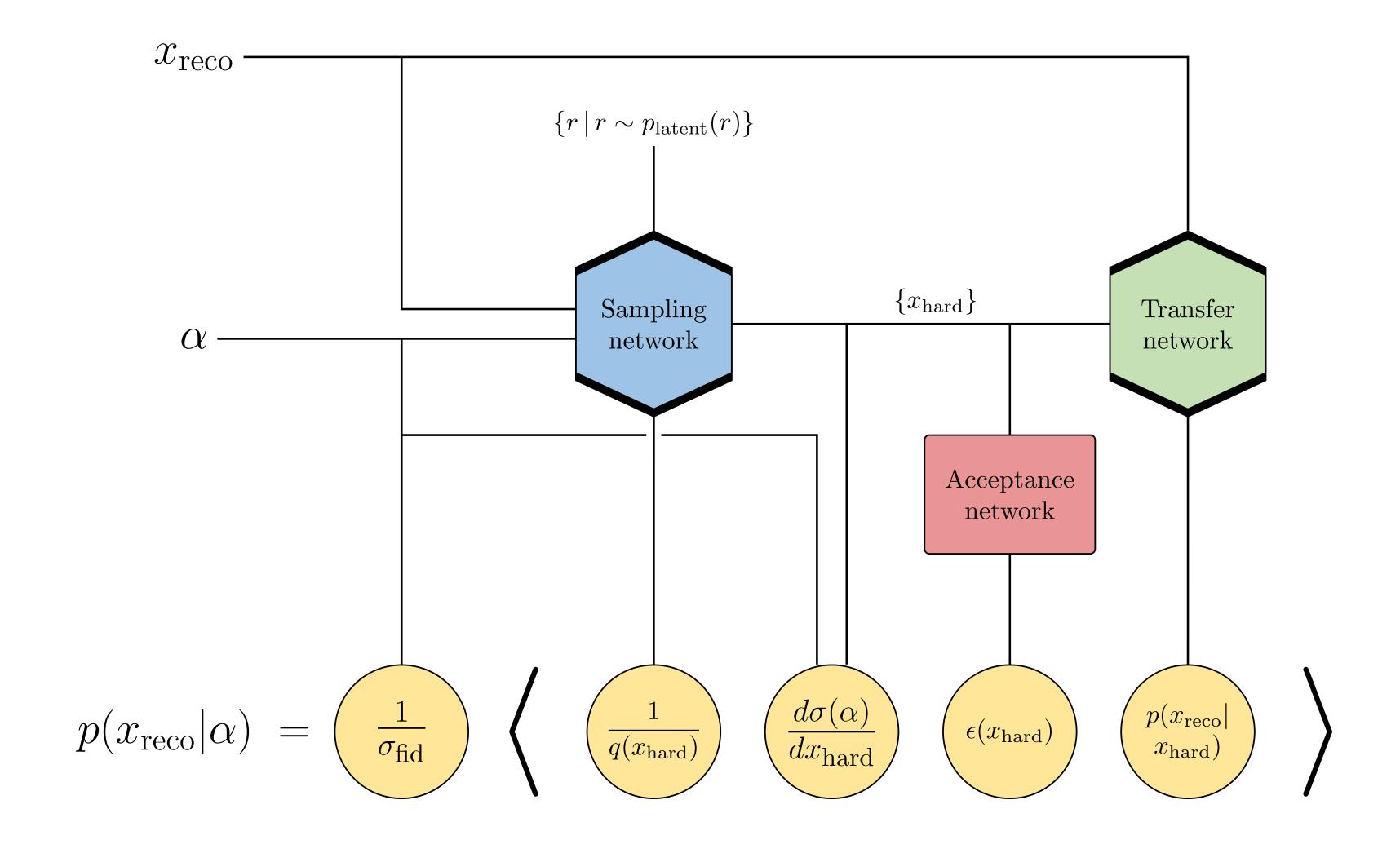
Integral becomes trivial if : $q(x_{hard}) \propto p(x_{hard} \mid x_{reco}, \alpha) \epsilon(x_{hard})$



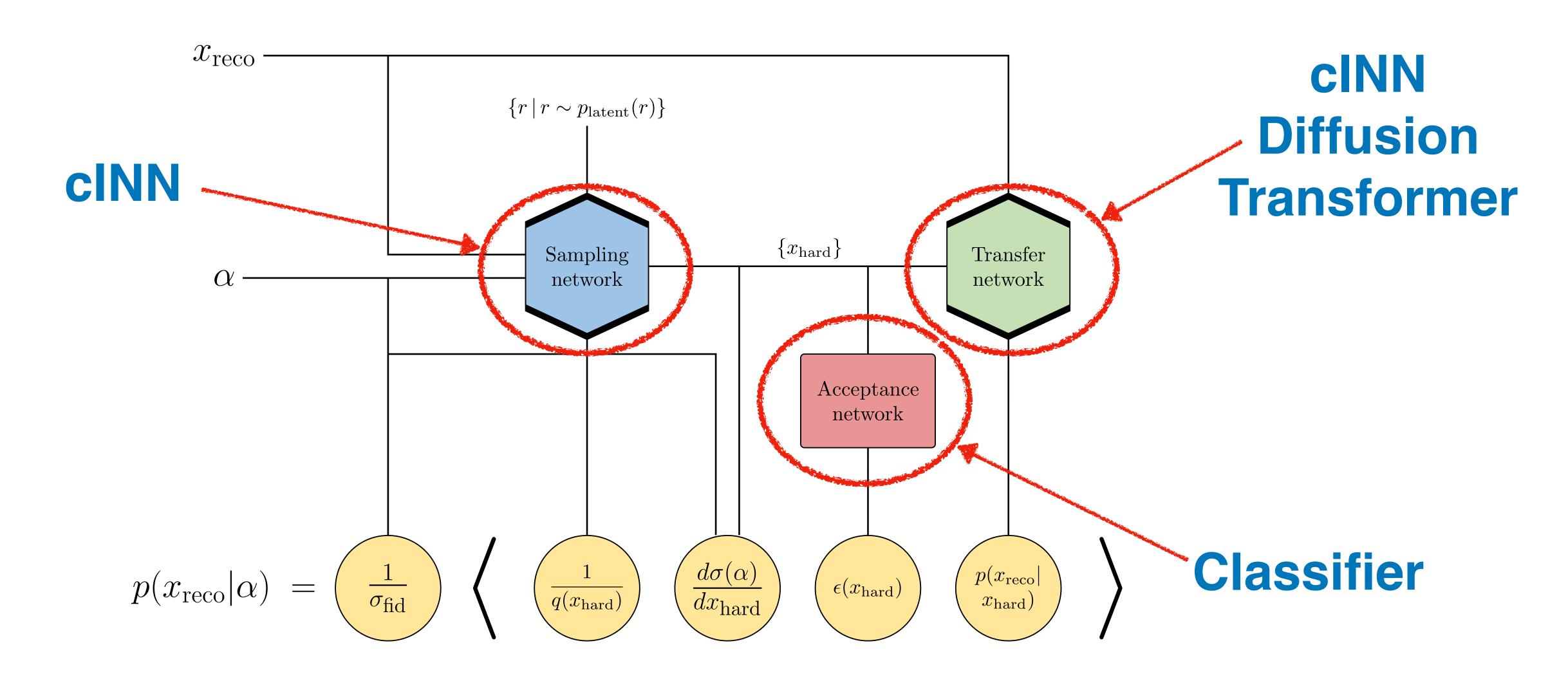
Generative Neural Network to encode sampling distribution



Machine-learned MEM



Machine-learned MEM

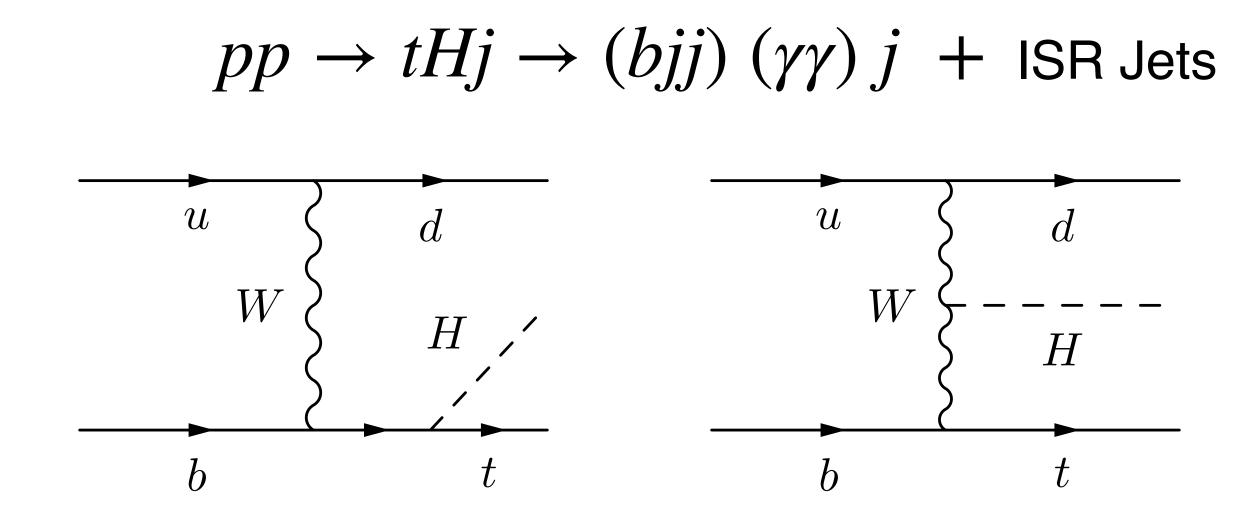


The physics example

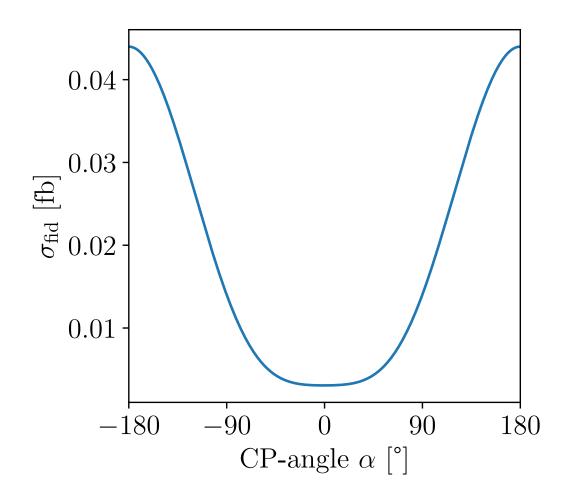
The problem: Measuring a CP-phase in the top Yukawa coupling

$$\mathcal{L}_{t\bar{t}H} = -\frac{y_t}{\sqrt{2}} \left[\cos \alpha \bar{t}t + \frac{2}{3} i \sin \alpha \bar{t}\gamma_5 t \right] H$$

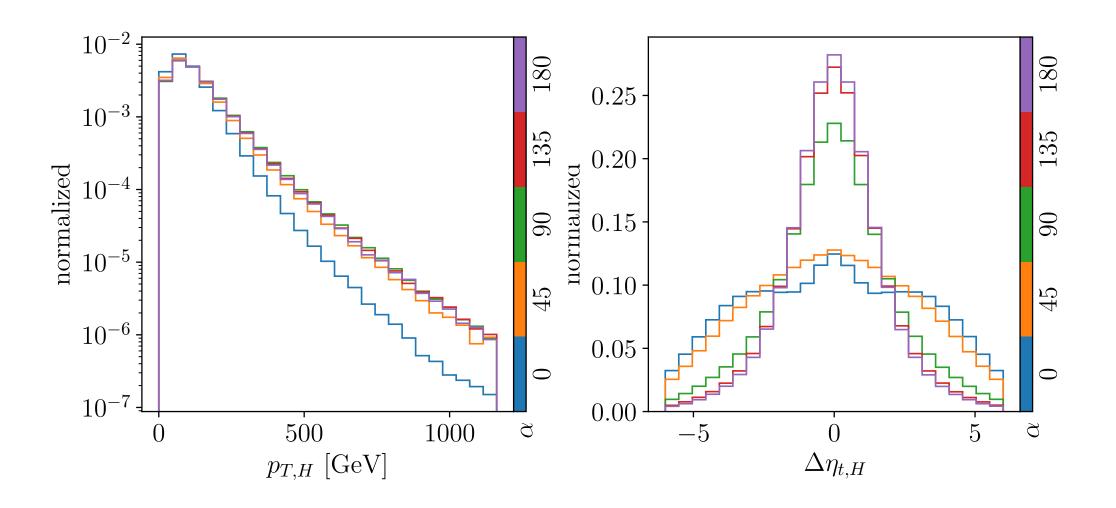
The process: Associated single-top and Higgs production



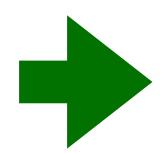
Why MEM here?



Cross-section very small and insensitive to variations in α

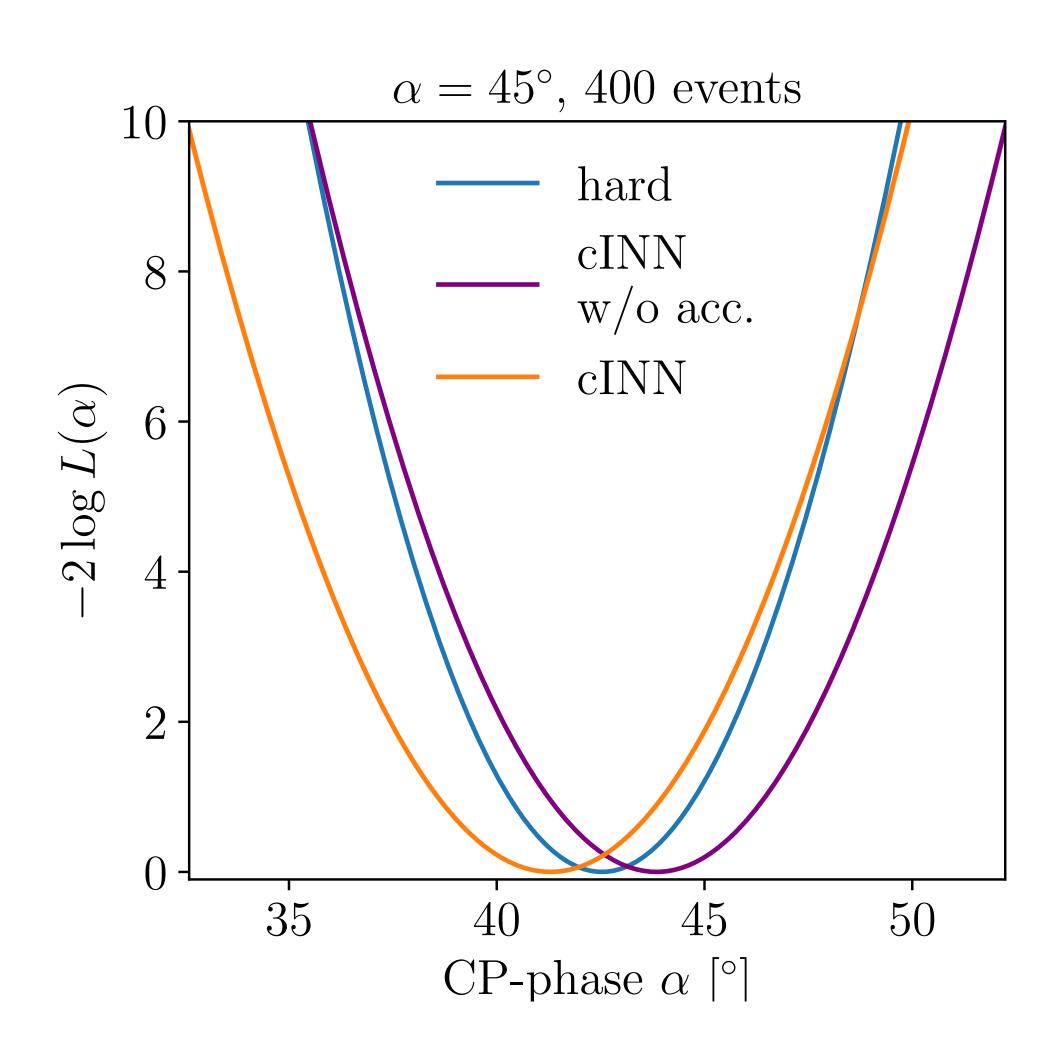


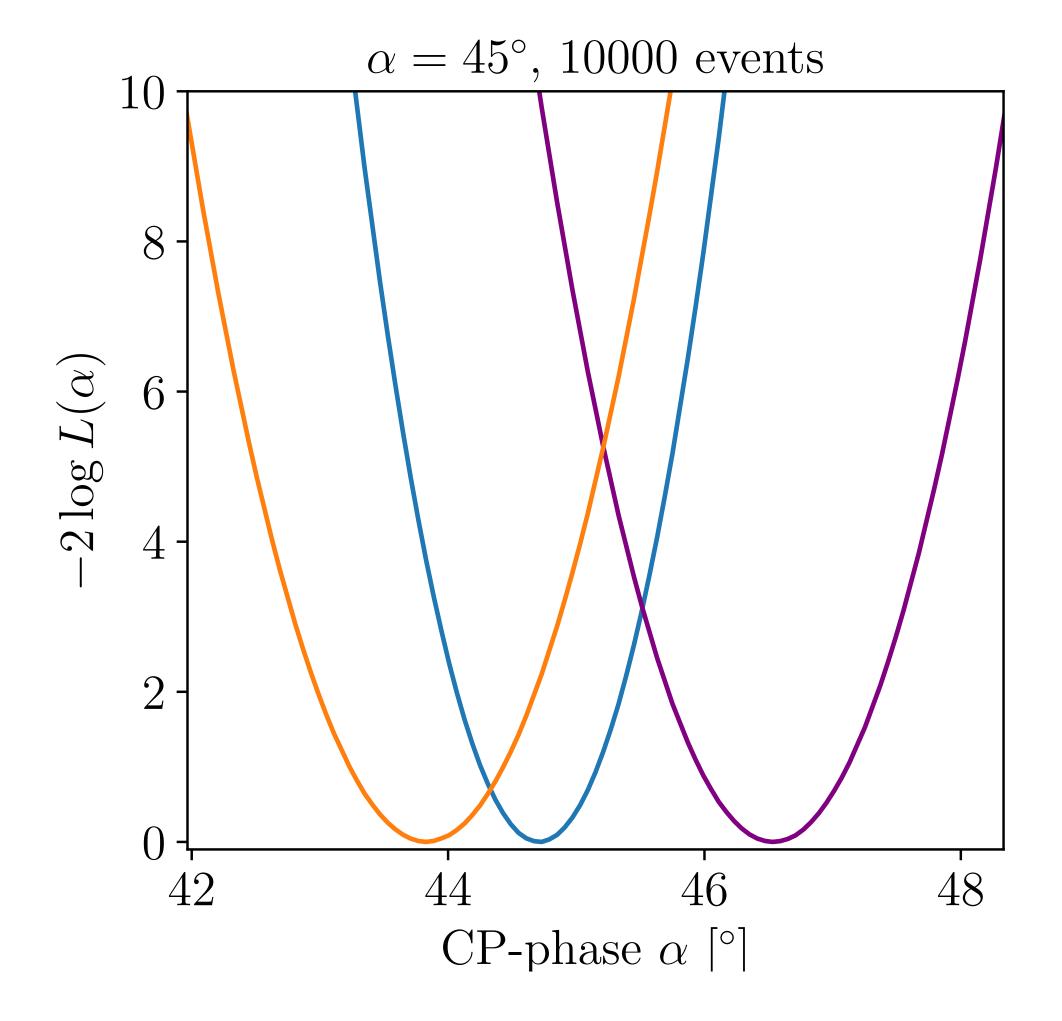
Hard-scattering $p(x_{hard} | \alpha)$ kinematics are sensitive



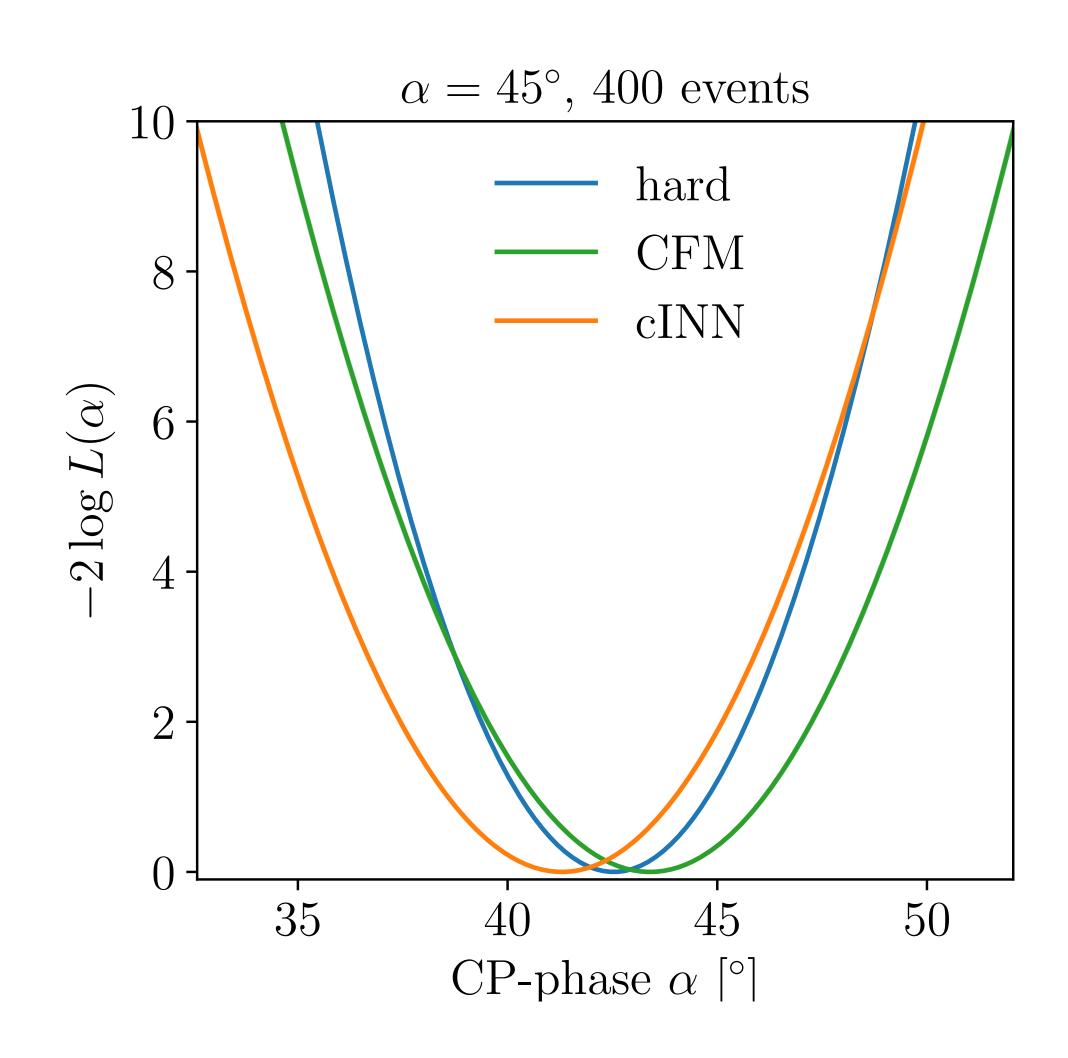
Ideal use case for the Matrix Element Method

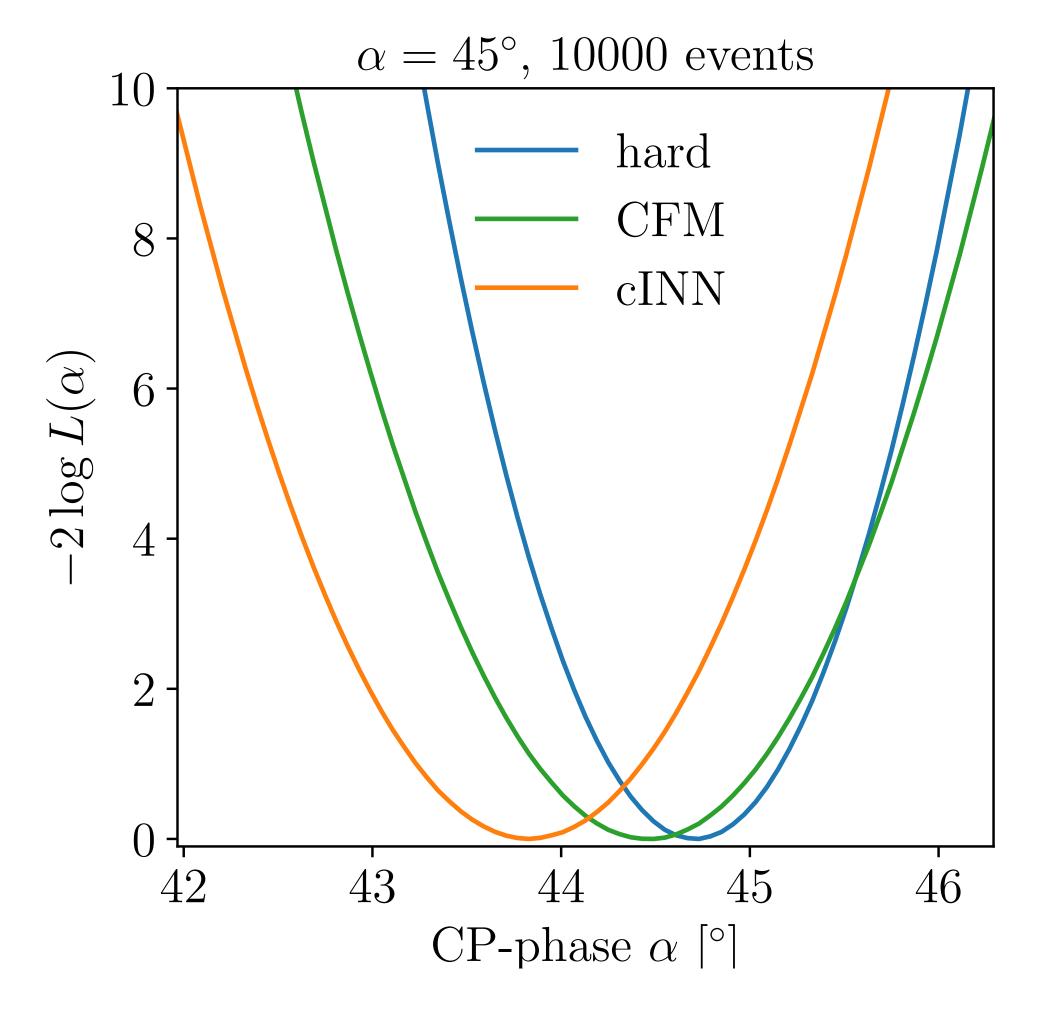
Baseline Results



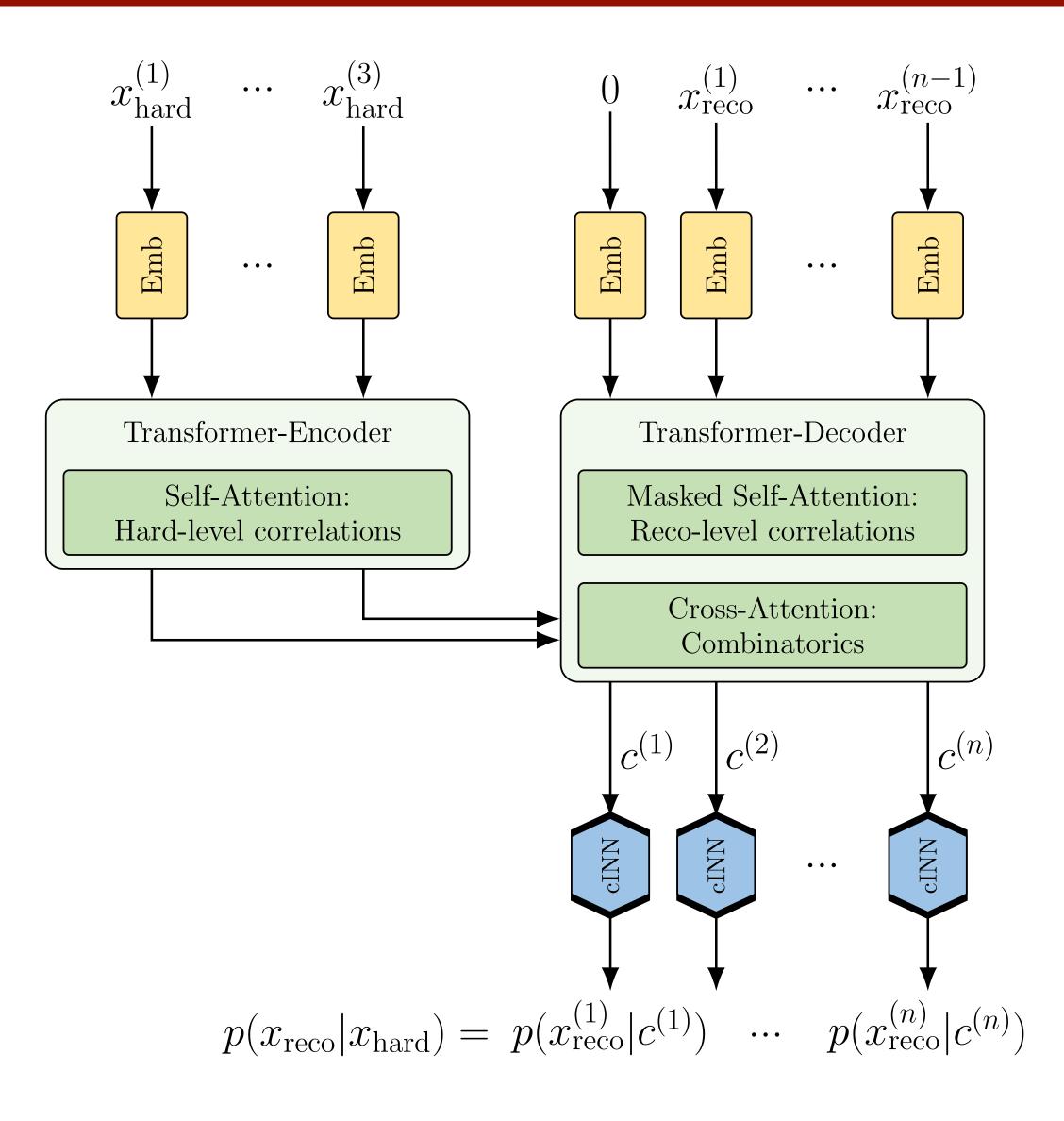


Transfer-Diffusion Results

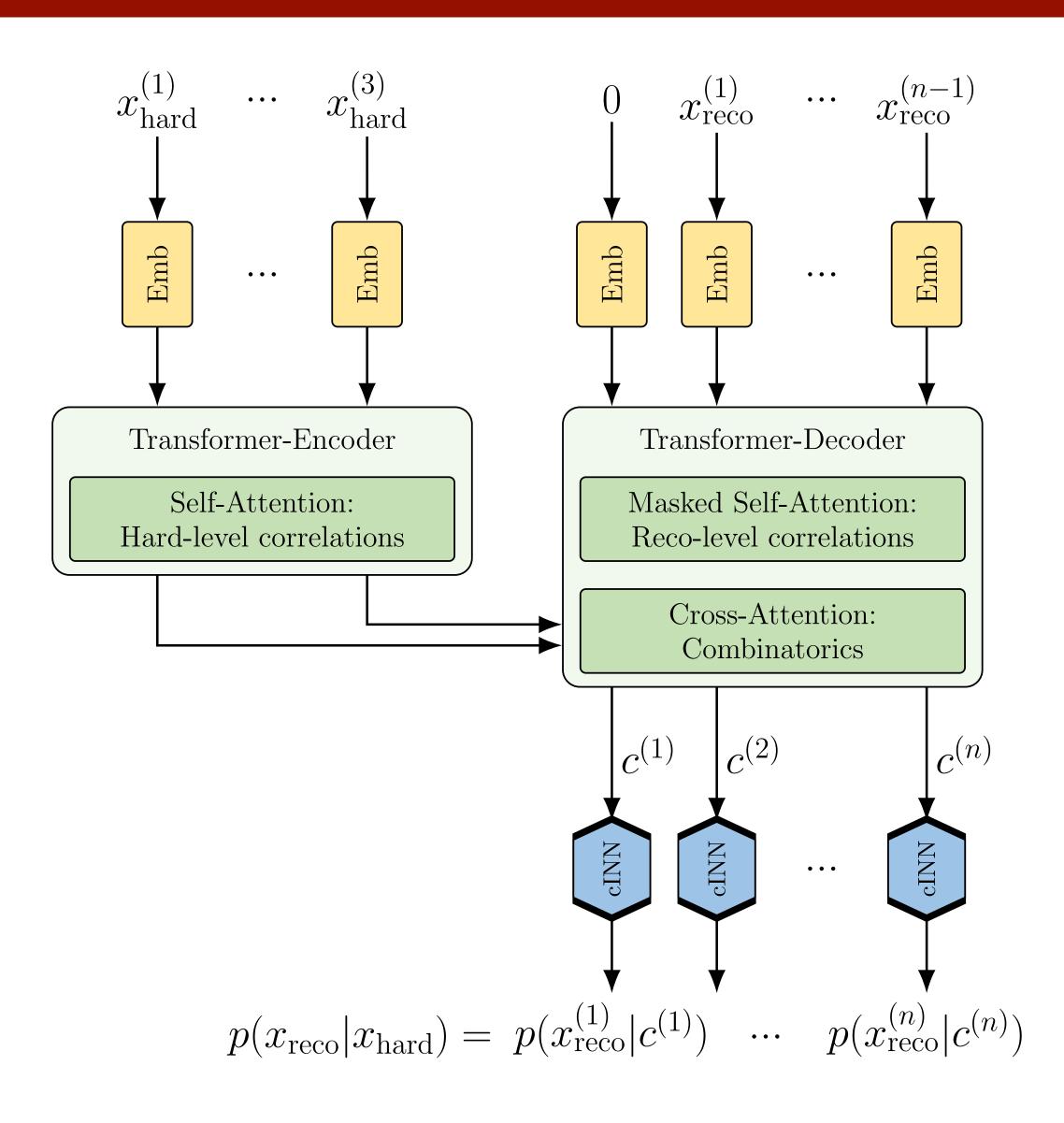




The Transfermer (Transfer-Transformer)



The Transfermer (Transfer-Transformer)



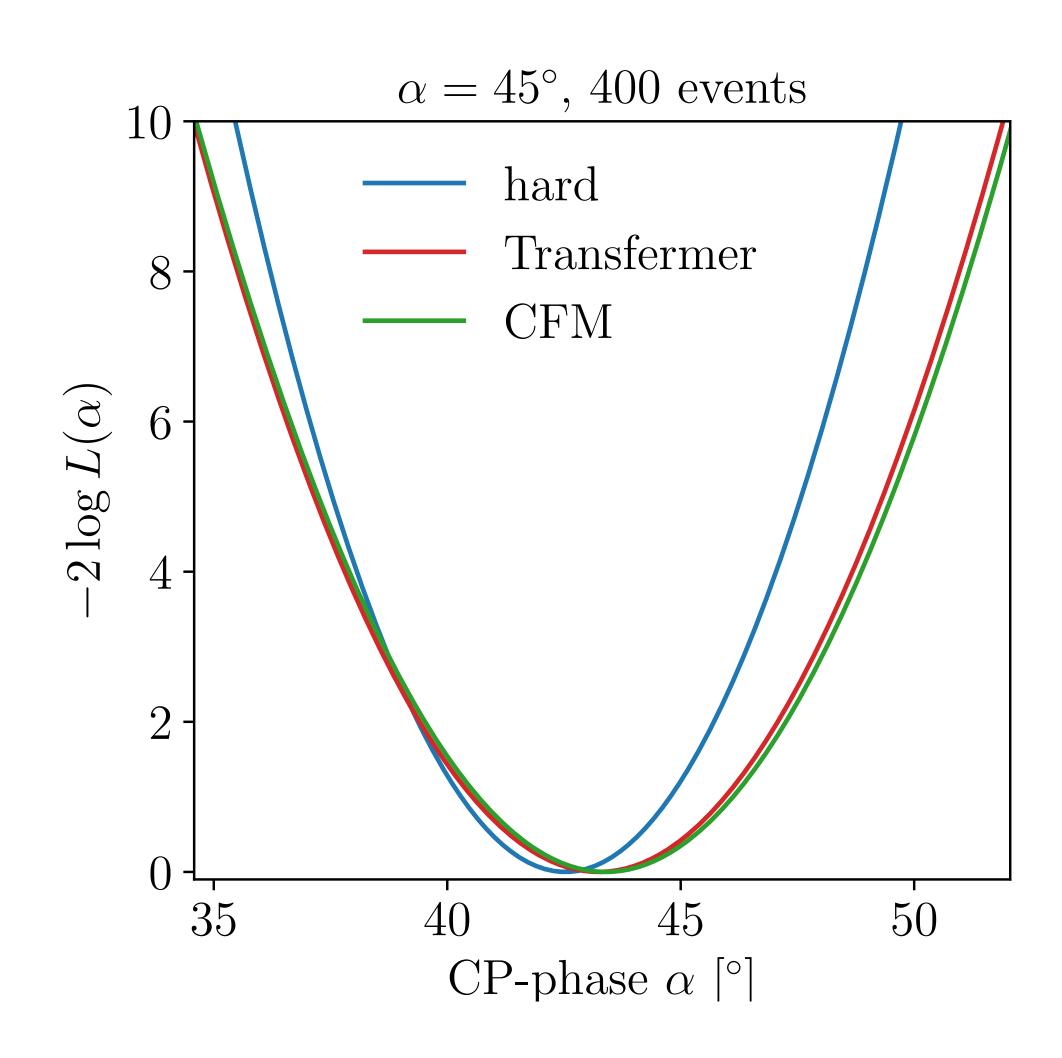
Why a Transformer here?

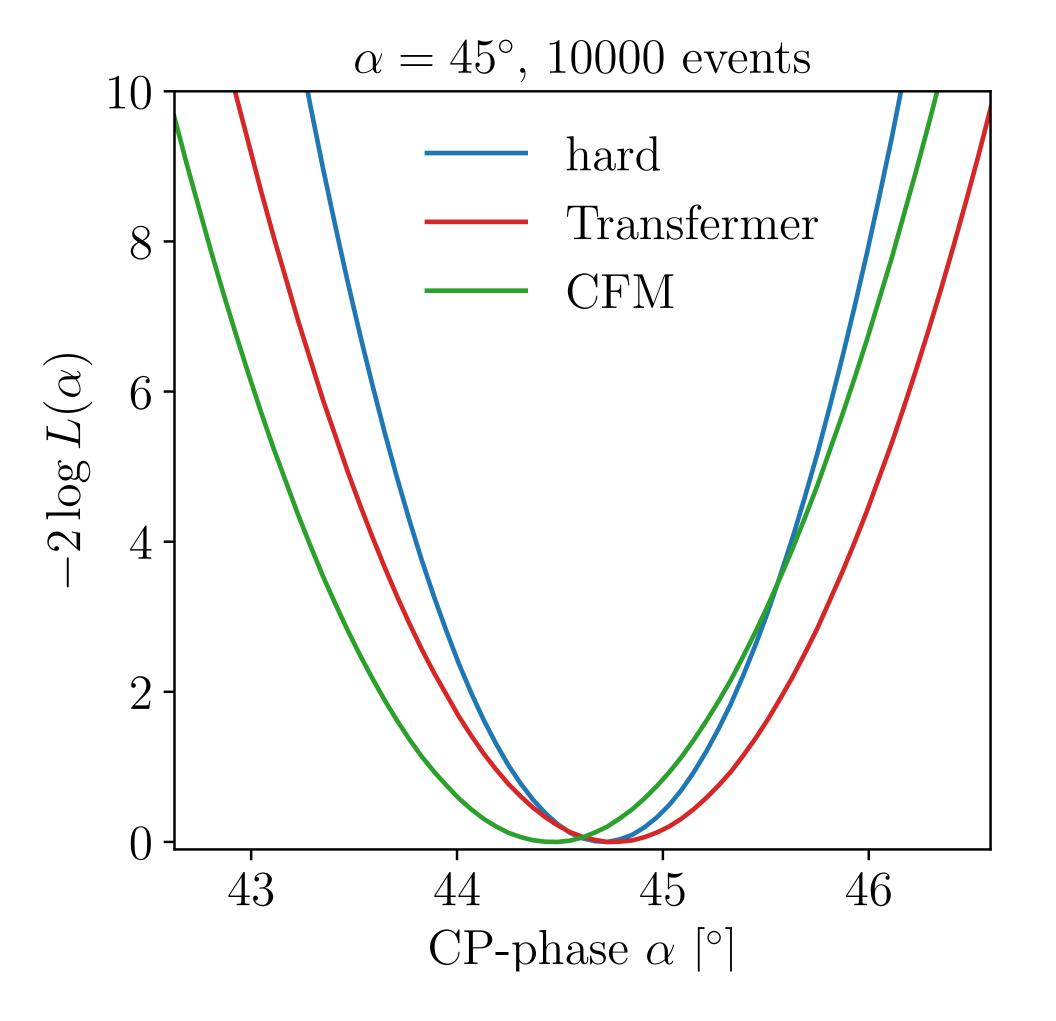
1. Jet combinatorics

$$pp \rightarrow tHj \rightarrow (bjj) (\gamma\gamma) j + ISR Jets$$

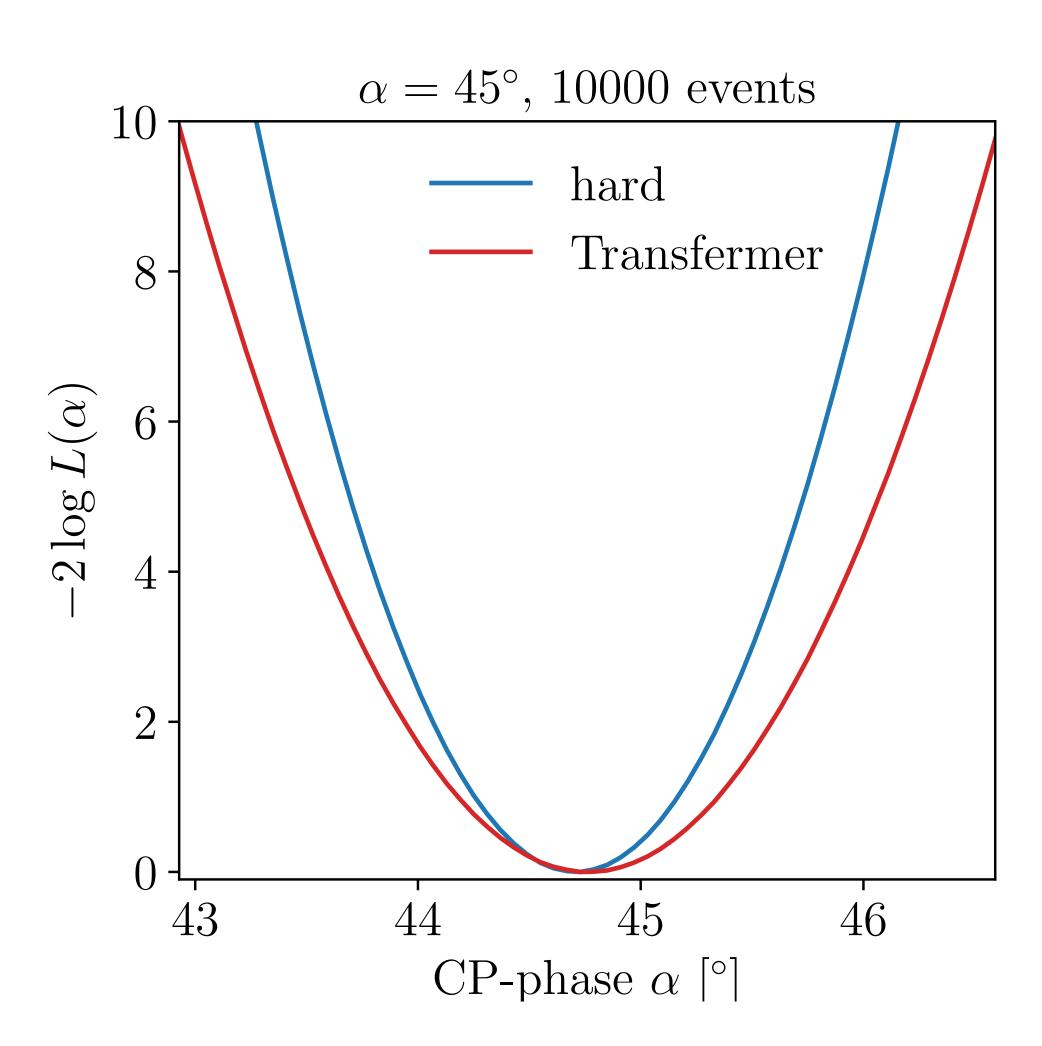
2. Can handle varying particle multiplicity

Transfermer Results





Estimating Uncertainty



Estimate uncertainty using replicas:

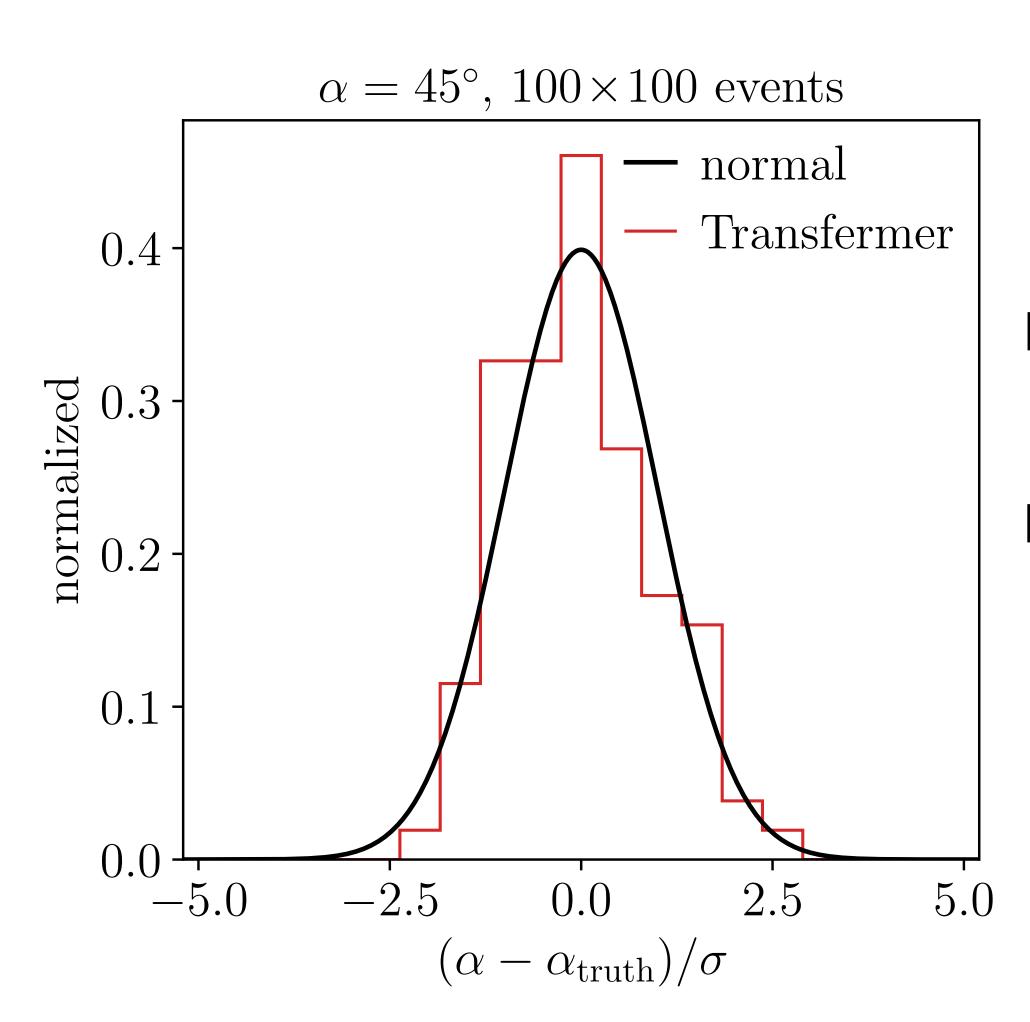
Integration uncertainty:

Resample the MC points using bootstrapping

Network uncertainty:

Use Bayesian NN and resample for each replica

Estimating Calibration



Divide the 10k events into 100 samples of 100 events

Look at this distribution of the minima around the true α

Summary and Outlook

We present a three network setup to make the MEM tractable and precise

- 1) Transfer-Network encoding the transfer probability $p(x_{reco} | x_{hard})$
- 2) Acceptance-Network encoding the efficiency $\epsilon(x_{hard})$
- 3) Sampling-Network encoding the proposal distribution $q(x_{hard})$

For the **Transfer-Network** going from cINNs to **Diffusion/Transformer** models improves precision For the **Unfolding-Network cINNs** with RQS-splines are still **state-of-the-art**

Bootstrapping and Bayesian NNs allow us to control the uncertainties

Extend our formalism to NLO

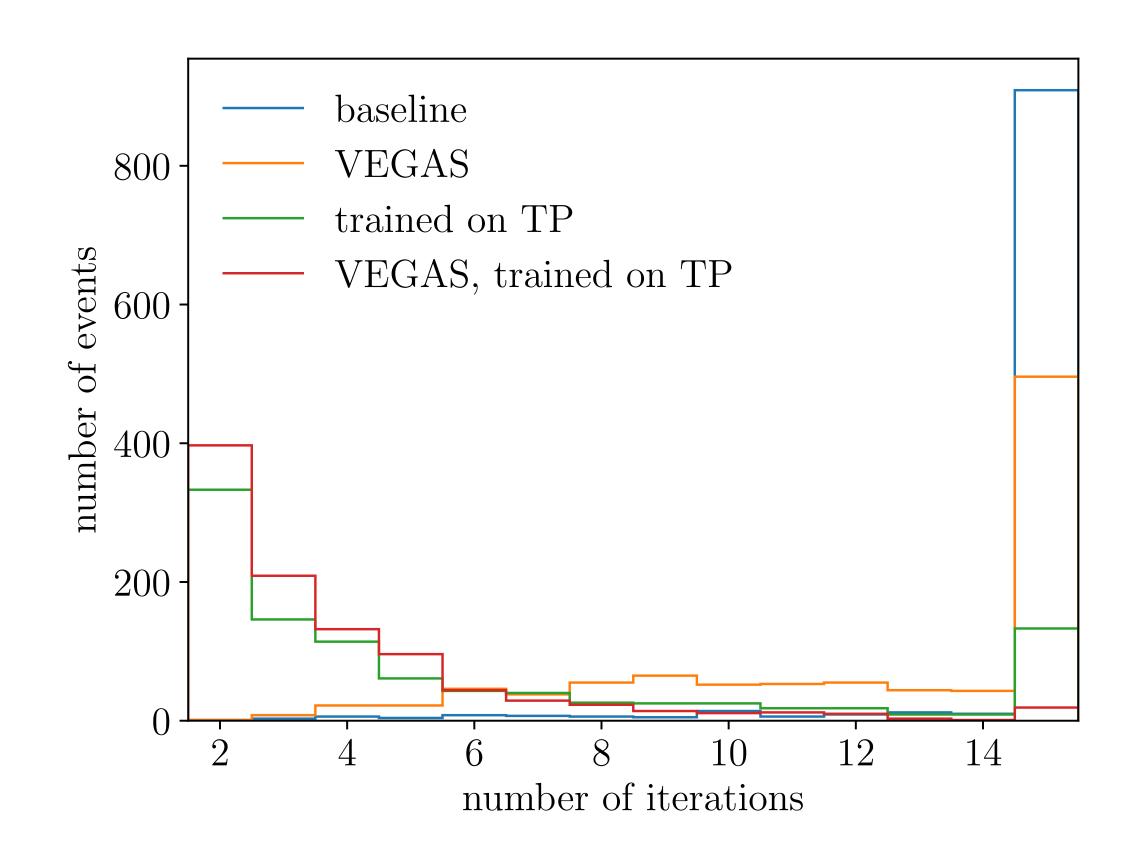
Test our setup on an actual analysis and/or more challenging processes

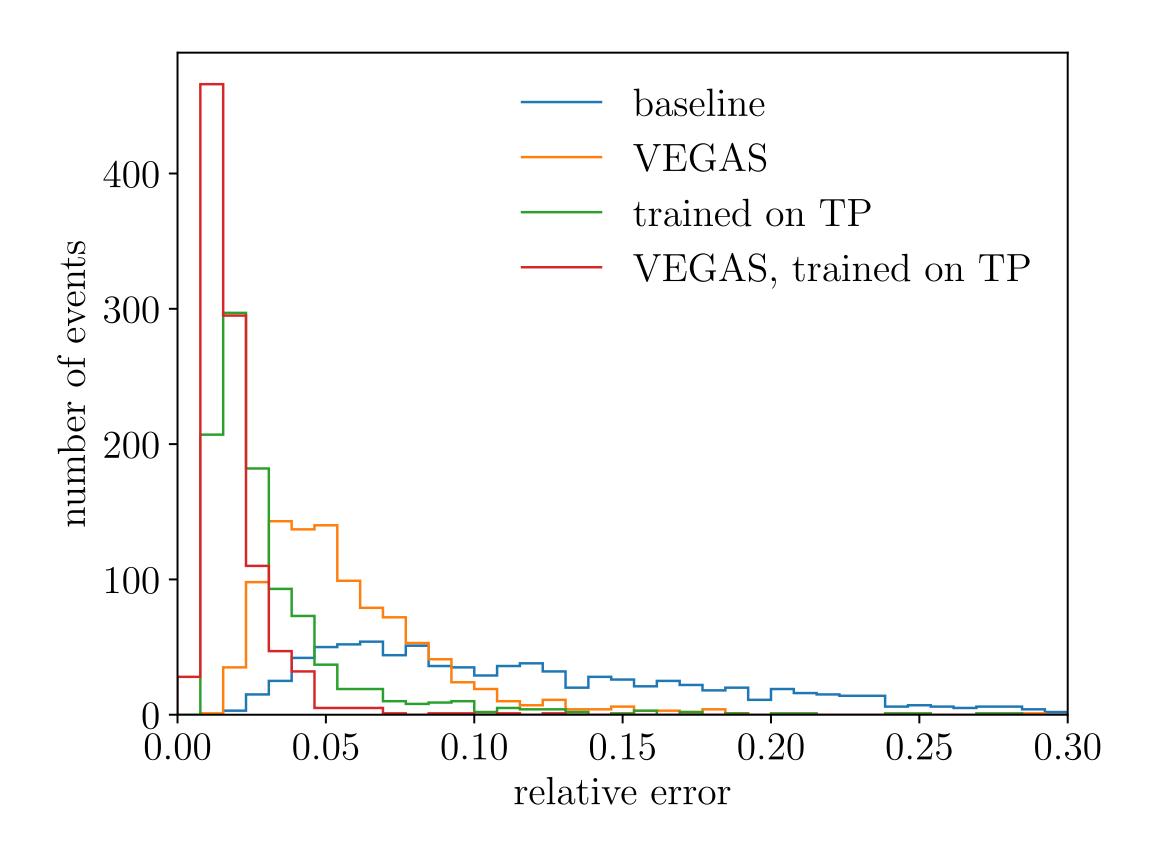
Improving integration convergence

$$\left\langle \frac{1}{q(x_{hard})} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard}) \right\rangle_{x_{hard} \sim q(x_{hard})}$$

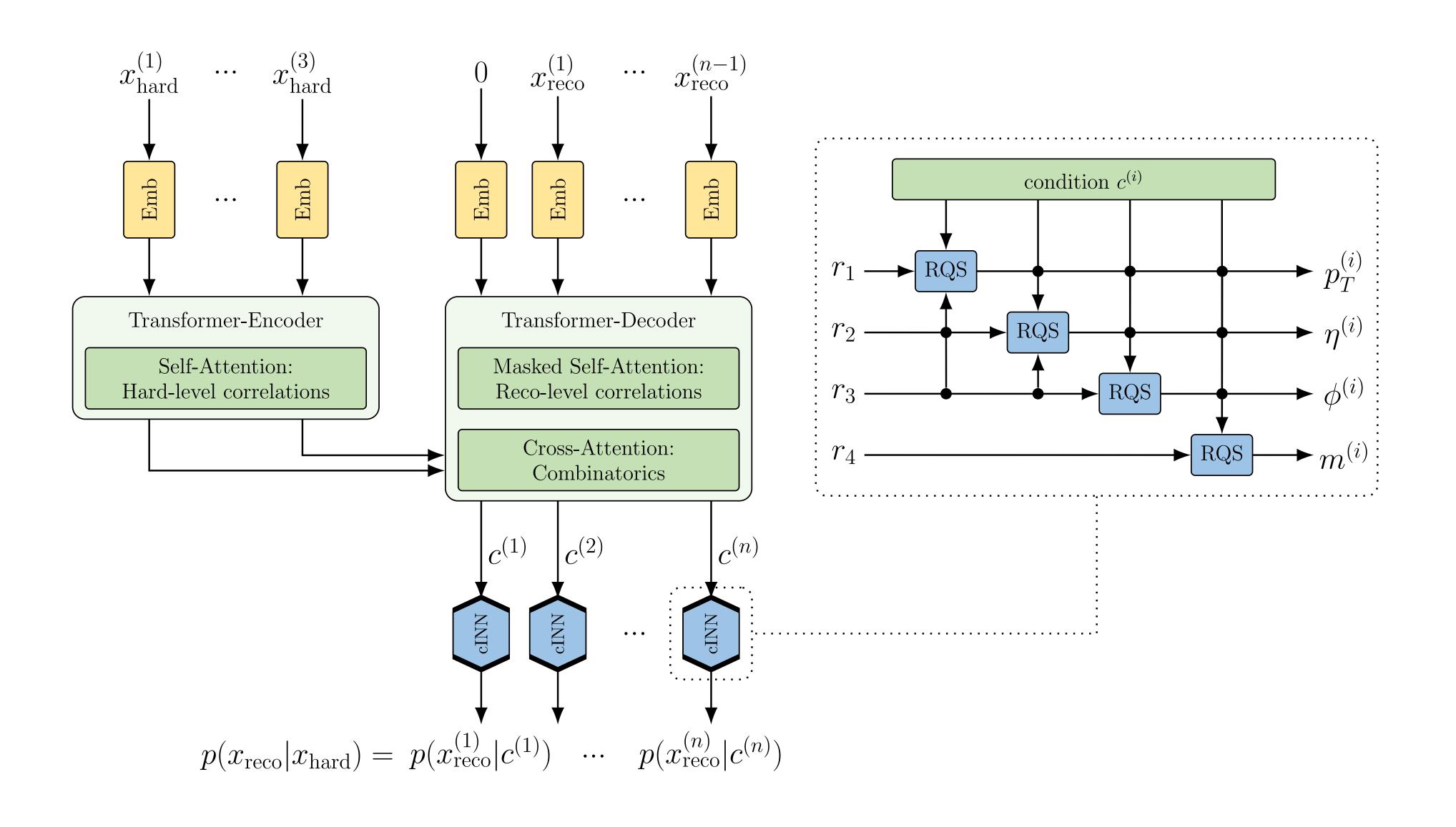
- In practice $p_{\theta}(x_{reco} \mid x_{hard}) \neq p(x_{reco} \mid x_{hard})$ Train Sampling Network on trained Transfer Probability
- In practice $q_{\theta}(x_{hard}) \neq q_{ideal}(x_{hard})$
 - Further refine the cINN latent space with a VEGAS grid

Improving integration convergence





The Transfermer (Transfer-Transformer)



Transfer-Network observables

