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Resonant anomaly detection

- Assume we have a resonant variable m, and some other
discriminating features x.
Pista(c,m) =w*Po(x,m) + (1 —w) * Pg(x,m)

- Signal Region(SR) and Side-Bands(SB) are defined with
respect to the resonant variable m.
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Data-driven anomaly detection techniques

Density Estimation Classifier Based
Based approaches approaches

 CATHODE (arxiv:2109.00546v3)

*  ANODE arxiv:2001.04990v2)

CURTAINS (arXiv:2203.09470v3)

- R-ANODE (this talk!)

CWOLA (arXiv:1902.02634v2)

 Ideal AD (ldeal version of
CATHODE, CURTAINS and
CWOLA) (arxiv:2109.00546v3)

etc ...
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https://arxiv.org/abs/2203.09470v3
https://arxiv.org/abs/1902.02634v2
https://arxiv.org/abs/2109.00546v3

ANODE
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Anomaly Detection with Density Estimation (arXiv:2001.04990v2)
Anomaly Detection in the Presence of Irrelevant Features arXiv:2310.13057v1
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* A conditional density
estimator is trained to lea
P;(x|m € SB) in the side-
bands(SB).

* The learned Py (x|m) is
used to interpolate into the
SR
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In SR, directly
learn
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ANODE

In SR, directly
learn
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Anomaly score: R(x|m) =




ANODE

In SR: Learn Py, (x|m)

Gaussian toy model ANODE must learn the
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ANODE

In SR: Learn P44, (x|m)

Classifying Anomalies THrough Outer Density Estimation (

-6 -4 /—'2

ANODE must learn th

localized.

0 2 4 6

e sharply peaked

distributions in x where the signal is

Signal Efficiency (True Positive Rate)

Worse performance than cl
approaches

. Gaussian toy model Signal Region
10° 4 20.0
f signal —— Supervised
background e 17.5 —— Idealized AD
| - -. data e ~_ . —— CATHODE
10° ; Vs N g 15.0 —— CWola
! / N 9 —— ANODE
/ \ 01251 AL YOS TN ..
> e random
2 / A \ g.
/ \
Z 104 / \ £ 10.0
g ' ‘ :
/ c
/ \ & 7.5
] / \ =
/ \ c
103 4 / \ 2 5.0
0 ] / \ )
II “ 2'5-
] 7 \ .
/ N O L S L
2 | % 0.0 ll.' 1 1 1 1 |l
10 - 0.0 0.2 0.4 0.6 0.8 1.0



https://arxiv.org/abs/2109.00546v3

R-ANODE (new method)

In the SR,
- Hold the interpolated Pz (x, m) fixed

Gaussian toy model
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R-ANODE

In the SR,
Hold the interpolated Py (x, m) fixed.

Directly model P¢(x, m) with a normalizing flow by fitting

to data: 106
Pdata (x; m) — 10%
w* Pg(x,m) + (1 —w) * Pp(x,m) .

(Normalizing (hold fixed) &

Flow)

Gaussian toy model

| —— signal
[ background
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R-ANODE

Pigia(x,m) =|wk Pg(x,m)+ (1 —w) * Pg(x,m)

/ (Normalizing (hold fixed)
Scan over different Flow)
w's as working
points
Loss: For each w, in SR

Minimize: — log(Py4:4,(x, m))

w.r.t parameters of P¢(x, m)




Dataset

- The LHC Olympics R&D dataset :

Data: 1M QCD di-jet events as background and
different amounts of signal events.

100 GeV

500 GeV
q

The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics
. arXiv:2101.08320



https://arxiv.org/abs/2101.08320

Dataset

. The SR : 3.3TeV <m;; < 3.7 TeV

- The resonant variable is m;;, and the features x are
[m]1; m;; —my,, Tﬁ, Tﬁ
Initial signal injection:
Nsig = 1000(~770 in SR), S/B~ 6 x1073, S/v/B~ 2.2

Initial working point w: true weight

The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics
. arXiv:2101.08320



https://arxiv.org/abs/2101.08320

Model architecture and hyperparameters

- The background model is the same as CATHODE/ANODE

(arXiv:2001.04990v2, arXiv:2109.00546v3): Masked
Autoregressive Flow (MAF) with affine transformations.

- For the sighal model for Pg(x,m), we use RQS
transformations with MADE blocks.

- For proof of concept, we use the true background
density P (m) estimated from histograms of the
background in SR.

- We also upgrade the ANODE model to P ,:,(x|m), to the
same RQS-based model, to compare R-ANODE vs ANODE


https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3
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Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly Detection arXiv:2309.13111
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Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly Detection arXiv:2309.13111
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R-ANODE improves ANODE and also gives better SIC Curves than

the idealized-AD
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Classifier based approaches
In SR:

Ideal-Anomaly Detector (IAD)

Perfectly
Simulated
background

Data (mixture
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Classifying Anomalies THrough Outer Density Estimation (CATHODE)
baCkg rou nd ) arXiv:2109.00546v3

Full Phase Space Resonant Anomaly Detection arXiv:2310.06897v2
cpe . The Interplay of Machine Learning--based Resonant Anomaly Detection
Classification Methods arXiv:2307.111571
Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly
Detection arXiv:2309.13111v1
Combining Resonant and Tail-based Anomaly Detection arxiv:2309.12918

Ideal AD iS an ideal VerSion Of Extending the Bump Hunt with Machine Learning arXiv:1902.02634

S fiar. Anomaly Detection in the Presence of Irrelevant Features
classifier-based approaches  27emey eeeson
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Classifier based approaches
In SR:

Ildeal-Anomaly Detector (IAD)

Perfectly It’s possible to exceed the IAD
Simulated performance, if not using a classifier-
background based approach.

Supervised is the true upper limit for
performance

Data (mixture

of signal and

Classifying Anomalies THrough Outer Density Estimation (CATHODE)
baCkg rou nd ) arXiv:2109.00546v3

Full Phase Space Resonant Anomaly Detection arXiv:2310.06897v2
cpe . The Interplay of Machine Learning--based Resonant Anomaly Detection
Classification Methods arXiv:2307.111571
Back To The Roots: Tree-Based Algorithms for Weakly Supervised Anomaly
Detection arXiv:2309.13111v1

. . . Combining Resonant and Tail-based Anomaly Detection arxiv:2309.12918
Ideal AD 1S an ]deal version Of Extending the Bump Hunt with Machine Learning arXiv:1902.02634
C ATHODE Anomaly Detection in the Presence of Irrelevant Features

arXiv:2310.13057v1
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Nsig vs Max-SIC
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Nsig vs Significance
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Samples from P¢(x, m)
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« Directly learning the signal distributions P¢(x, m) leads
to a more interpretable method.




Samples from P¢(x, m)

Samples
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« Directly learning the signal distributions P¢(x, m) leads
to a more interpretable method.
« This could give us information about the sighal: eg:
mass of subjet, Pronginess of subjet.
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Scanning over w
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SIC is robust to incorrect choice of w, and could be used
to put a lower bound on w




Conclusions

- R-ANODE improves ANODE and exceeds the
performance of CATHODE and IAD.

- Performance of R-ANODE is robust to the incorrect
choice of w

- R-ANODE directly learns the signal distribution, which
allows us to draw samples directly from the signal
distribution.

Future directions

- Study how irrelevant features affect the performance
- Apply this method with bump-hunt

- Study the effects of sculpting
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R-ANODE

Estimate Pz (x|m) and Pg(m) in SB
Interpolate both into SR to get P;(x,m)
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Samples for different w
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Samples for different w
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Ensembling

For each signal injection, we resample the the signal 10
times. For each resample, we shuffle and split the data 20
times into training-validation splits (80-20) and train the
model.

For each resample, ensembling is done with 10 lowest
validation loss models from each training, and 20 re-
trainings (200 models).

Similarly, the IAD-BDT we train HistGradientBoosting
classifer, with default hyperparameters for 200 epochs,
but shuffle-and split the data and retrained it 50 times
(50-50), for ensembling.




Model architecture and hyperparameters

- For the sighal model for Pg(x,m) and P¢(x|m), we use
RQS transformations with 6 MADE blocks, with block
consisting of 2 hidden layers with 64 nodes each,
dropout=0.2, and batch-normalization is applied in
between layers.

- We also upgrade the ANODE model to P ,:,(x|m), to the
same RQS model, to compare R-ANODE vs ANODE \

- The RQS-model for all cases is trained with a learning
rate = 0.0003, with the AdamW optimizer, with a batch
size of 256, for 300 epochs.




Model architecture and hyperparameters

- The background model is the same as
CATHODE/ANODE (arxXiv:2001.04990v2,
arXiv:2109.00546v3: Masked Autoregressive Flow
(MAF) with affine transformations, consisting of 15

MADE blocks, each block consisting of one hidden
layer of 128 nodes.

- It is trained with Adam, for 100 epochs, learning
rate: 0.0001, batch size: 256.


https://arxiv.org/abs/2001.04990v2
https://arxiv.org/abs/2109.00546v3

R-ANODE

- With signal models P;(m), learn the conditional density
Pg(x|m)
Pyata(x,m) = w * Pg(x|m) * Ps(m) + (1 —w) * Pg(x,m)
In this case, with the learned conditional density P¢(x|m),

the likelihood ratio can be constructed as
R(x|m) = Pg(x|m)/Pg(x|m)

OR

In SR, learn the joint distribution P¢(x,m), using normalizing
flows by fitting to data:
Paata(x,m) =w x Ps(x,m) + (1 —w) * Pg(x,m)




R-ANODE

With learned joint density P¢(x, m), one could draw samples
in mass, and fit histograms to estimate P¢(m), which allows

us to estimate Pg(x|m) = Pg¢(x, m)/Ps(m). So, we can still
construct the same likelihood ratio R(x|m) = Pgs(x|m)/

PB (xlm) ¢ Samples
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SIC Curves
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At lower signal strengths, R-ANODE has better Max-
SIC values than the ideal-AD and ANODE.




R-ANODE

Estimate Pz (x|m) and Pz(m) in SB to estimate Pgz(x, m)
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Classifier based approaches
In SR:

Ideal-Anomaly Detector (IAD) CATHODE

Simulated Interpolated
background

VS

Data (mixture
of signal and
background)

Data (mixture
of signal and
background)

Classification Classification

Ideal AD is an ideal version of CATHODE saturates the
CATHODE performance of |IAD




