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Given an adequate method of defining “sameness” pseudo-labels,  
self-supervised models can be trained to extract features without 
relying on explicit labels

Motivation
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✓ Training (pretext task) on huge datasets from real collisions 

✓ Mitigate dependence of models on difference between simulation and reality 

✓ Inject notions of “sameness” (e.g. symmetries) into learned representations [1]

Potential perks for high energy physics…

[1] Symmetries, Safety, and Self-Supervision. B. M. Dillon, G. Kasieczka, T. Plehn et al. (2021)

https://scipost.org/preprints/scipost_202108_00046v2/
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Contrastive learning of jets via detector replicas
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See also:  
✴ Tanmoy’s talk  
✴ similar effort by MIT/KIT/SLAC presented at BOOST 

https://indico.cern.ch/event/1253794/contributions/5640879/
https://indico.physics.lbl.gov/event/975/contributions/8262/attachments/4079/5490/BOOST_Krupa_2.pdf


[2] Configurable calorimeter simulation for AI applications A. Charkin-Gorbulin et al, Mach. Learn.: Sci. Tech. (2023)

Dataset
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✴  generated & showered with Pythia8 ( ) 

✴ Select up to two  jets matched to truth jets (via )

p+p+ → qq, gg Ntrain = 254k

R = 0.4 ΔR

✴ Detector response simulated with COCOA [3] (GEANT4) for 2 random seeds

See also: 
Nilotpal’s talk

https://iopscience.iop.org/article/10.1088/2632-2153/acf186
https://indico.cern.ch/event/1253794/contributions/5588629/


Example of a positive jet pair

*inter-layer and track-cell edges not shown 6
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Input dimensionality
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Graph encoder “backbone” model
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Global  
representation

∑
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Message-passing  
blocks
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Global  
representation

∑

ha

MLP za

̂za ⋅ ̂zb = cos(θab)

1. During SSL training, use “NT-Xent” loss [3] for each batch of  jet pairs:N = 300

L(za, zb) = − log
exp( ̂za ⋅ ̂zb/τ)

∑2N
i≠a exp( ̂za ⋅ ̂zi /τ)

̂za := za/ |za | ⟹ ̂za ⋅ ̂zb = cos(θab)where

[3] A Simple Framework for Contrastive Learning of Visual Representations. T. Chen, G. Hinton. et al. (2020)

Message-passing  
blocks

http://proceedings.mlr.press/v119/chen20j/chen20j.pdf
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Global  
representation

∑

ha

MLP za

̂za ⋅ ̂zb = cos(θab)2. During downstream training, can freeze backbone and train single-layer perceptron

Pretrained, frozen 
backbone class, E, …

ha
(128,300) ReLU (300,1)

1. During SSL training, use “NT-Xent” loss [3] for each batch of  jet pairs:N = 300

L(za, zb) = − log
exp( ̂za ⋅ ̂zb/τ)

∑2N
i≠a exp( ̂za ⋅ ̂zi /τ)

̂za := za/ |za | ⟹ ̂za ⋅ ̂zb = cos(θab)where

[3] A Simple Framework for Contrastive Learning of Visual Representations. T. Chen, G. Hinton. et al. (2020)

Message-passing  
blocks

http://proceedings.mlr.press/v119/chen20j/chen20j.pdf


Probing the  contrastive spacez
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t-SNE decompositionContrast between jet pairs
• quark jet

• gluon jet



Downstream task 1: q/g tagging
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  39k trainable parameters

337k trainable parameters
vs.
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Downstream task 2: jet E reg.
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We can learn to encode high-dimensional feature space of jet 
detector response in a generic way using SSL

Summary & Outlook

Current perf. limited by size of data used to train SSL backbone

✴ Extension to large-R jets, anomalous jet detection underway 

✴ Can we define transformations that preserve “sameness” on real data?

Next/future directions

 can be efficiently fine-tuned for decent performance on downstream tasks⇒
 first demonstration using low-level detection inputs⇒



“Machine learning for jets of particles in Hamburg, Germany”

Thank you!

AI 
(DALL-E)

Reality


