

EPiC-ly Fast Particle Cloud Generation with Flow Matching and Diffusion

Erik Buhmann, <u>Cedric Ewen*</u>, Darius Faroughy, Tobias Golling, Gregor Kasieczka, Matthew Leigh, Guillaume Quétant, John Andrew Raine, Debajyoti Sengupta, David Shih

07/11/2023 - ML4Jets2023

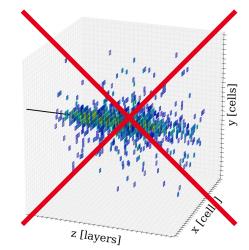
arxiv: 2310.00049

* cedric.ewen@studium.uni-hamburg.de

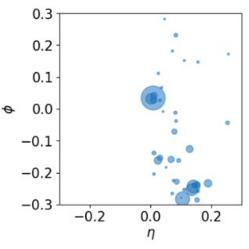
07/11/2023

Generative Simulation in Particle Physics

- Monte Carlo Simulations are time-consuming
- Generative machine learning
 - Train on a small dataset
 - Sample from model
 - Significantly faster
 - More data
- Goal: Move from image structures to point clouds
- Point clouds: natural representation for many systems
 - Unordered
 - Variable set cardinalities
- Simulation of jets
 - Complex structure
 - Good for benchmarking generative models



Photon Shower in a Calorimeter

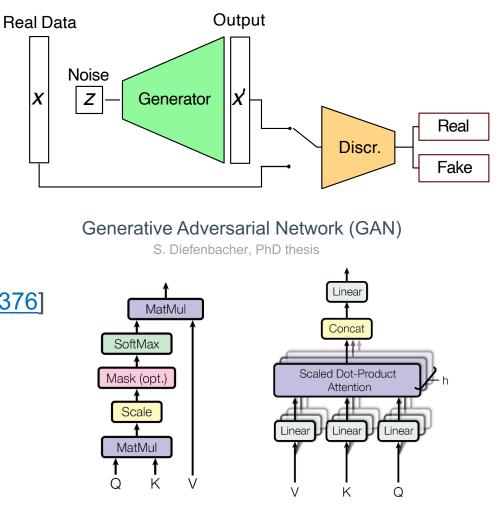


Pythia Generated Top Quark Jet

Butter et al.; GANplifying Event Samples; arxiv:2008.06545

Generative Approaches for Jet Generation

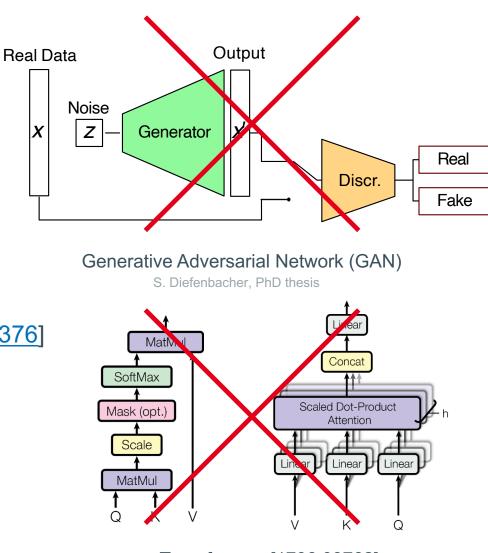
- Requirements for generative models:
 - Permutation equivariance
 - Handle variable set cardinalities
- Previous approaches:
 - MP-GAN [2106.11535]
 - EPiC-GAN (DeepSets based GAN) [2301.08128]
 - Fast but unstable training behaviour
 - PC-JeDi (Transformer based diffusion model) [2303.05376]
 - Slow but powerful training objective



Transformer [1706.03762]

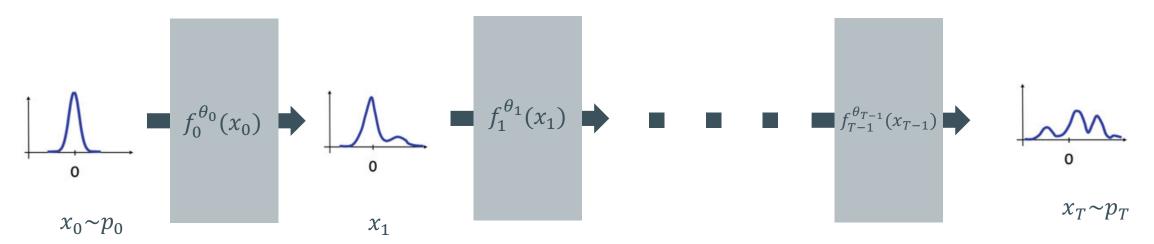
Generative Approaches for Jet Generation

- Requirements for generative models:
 - Permutation equivariance
 - Handle variable set cardinalities
- Previous approaches:
 - MP-GAN [2106.11535]
 - EPiC-GAN (DeepSets based GAN) [2301.08128]
 - Fast but unstable training behaviour
 - PC-JeDi (Transformer based diffusion model) [2303.05376]
 - Slow but powerful training objective
- Combine powerful diffusion objective with more scalable and fast EPiC layers
- Compare to flow-based Flow Matching objective



Transformer [1706.03762]

Normalizing Flows



Normalizing Flow (NF)

Training:

 $\log p_T(x_T) = \log p_0(x_0) - \log \left| \frac{\partial f_t^{\theta}}{\partial x_t} \right|$

Sampling:

$$x_T = f_{T-1} \circ \cdots \circ f_0(x_0)$$

- *f* must be invertible
- Determinant computationally expensive
 - Restricted transformations needed

Rezende et al.; Variational Inference with Normalizing Flows; arxiv:1505.05770

07/11/2023

Continuous Normalizing Flows

Normalizing Flow (NF)

Training:

 $\log p_T(x_T) = \log p_0(x_0) - \log \left| \frac{\partial f_t^{\theta}}{\partial x_t} \right|$

Sampling:

$$x_T = f_{T-1} \circ \cdots \circ f_0(x_0)$$

- *f* must be invertible
- Determinant computationally expensive
 Restricted transformations needed

Continuous Normalizing Flow (CNF)

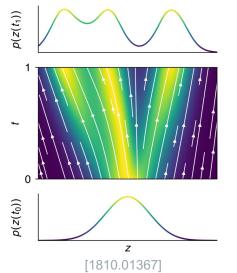
$$\log p_1(x_1) = \log p_0(x_0) - \int_{t_0}^t Tr\left(\frac{\partial v_\theta}{\partial x_t}\right) dt$$

Solve ODE (ordinary differential equation)

- *f* has no restrictions
- Trace is easier to calculate
- Still computationally expensive

Chen et al.; Neural Ordinary Differential Equations; arxiv:1806.07366

Flow Matching



Continuous Normalizing Flow (CNF)

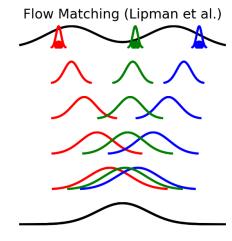
Training:

Training is difficult because
 ODE needs to be solved

$$\frac{\partial x_t}{\partial t} = v_\theta(x_t, t)$$

 $\log p_1(x_1) = \log p_0(x_0) - \int_{t_0}^t Tr\left(\frac{\partial v_\theta}{\partial x_t}\right) dt$

 $L_{FM} = ||v_{\theta}(x_t) - u_t(x_t|x_0)||^2$



 $x_t = \gamma_t x_0 + \sigma_t \epsilon_{[2302.00482]}$

Flow Matching (FM)

Training:

- Simulation-free training objective (no ODE solving during training)
- Regressing against conditional flows
- Much faster training

Lipman et al.; Flow Matching for Generative Modeling; arxiv:2210.02747

Diffusion Models

- Adding noise to perturb data
- Description as stochastic differential equation (SDE)
- Sample by solving reverse SDE
- Train model by approximating score function with conditional probability paths

Forward SDE (data
$$\rightarrow$$
 noise)
 $\mathbf{x}(0)$ $\mathbf{dx} = \mathbf{f}(\mathbf{x}, t) dt + g(t) d\mathbf{w}$ $\mathbf{x}(T)$
 $\mathbf{x}(T)$
 $\mathbf{x}(0)$ $\mathbf{dx} = [\mathbf{f}(\mathbf{x}, t) - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}}$ $\mathbf{x}(T)$
Reverse SDE (noise \rightarrow data)

Probability Flow ODE:

- Remove stochasticity
- SDE \rightarrow ODE
- ➤ A CNF describable with FM
- "Continuous Time Generative Models"

 \mathbf{N}

$$L = ||s_{\theta}(x_t) - V_x \log p_t(x|x_0)||$$

Loss Function

1.1

$$dx = \left[f(x,t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(x) \right] dt$$
Probability flow ODE

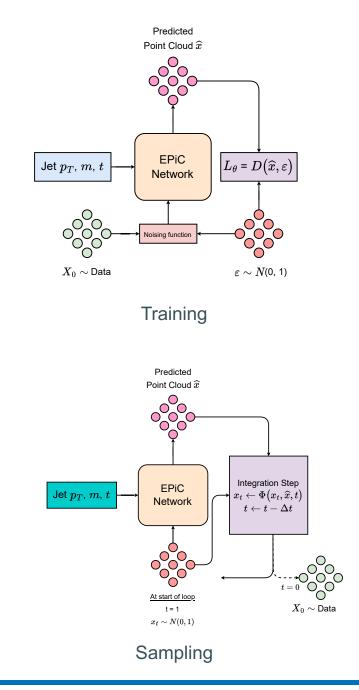
Song et al.; Score-Based Generative Modeling through Stochastic Differential Equations; arxiv:2011.13456

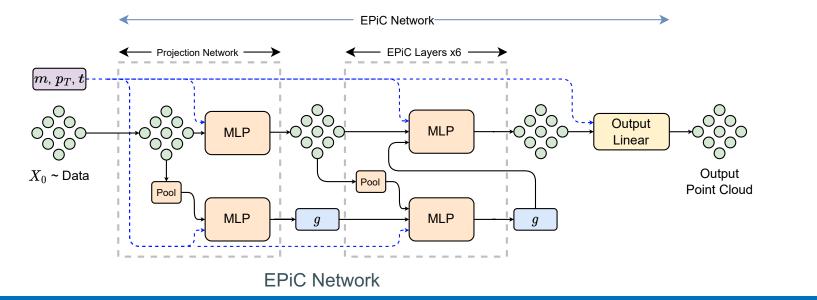
EPiC-FM & EPiC JeDi

• EPiC-FM: EPiC Architecture with Flow Matching $L_{FM}(v_{\theta}, u_{t}(x|x_{0})) = \left| \left| v_{\theta}(x_{t}, t) - ((1 - \sigma_{min})\epsilon - x_{0}) \right| \right|^{2}$

EPiC-JeDi: EPiC Architecture with JeDi diffusion

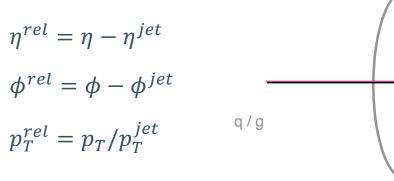
$$L_{JeDi}(v_{\theta}, s_t(x|x_0)) = \left(1 - \alpha \frac{\beta(t)}{\sigma(t)^2}\right) \left| \left| v_{\theta}(x_t, t) - \epsilon \right| \right|^2$$

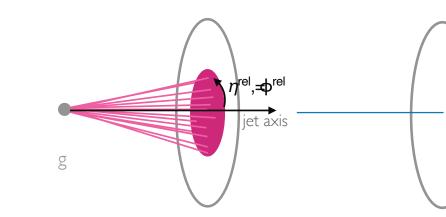




Benchmark on Pythia Jets

- Benchmark dataset: JetNet [2106.11535]
- Pythia simulated jets from proton-proton c⁻
- Anti- k_T clustered with R = 0.4
- Maximum particle multiplicity of 30 and 15
- 5 jet classes (gluons, light-quarks, top qua
- ~200k events per class
- Focus on top quarks (m⁽¹⁾)
- Relative jet constituents





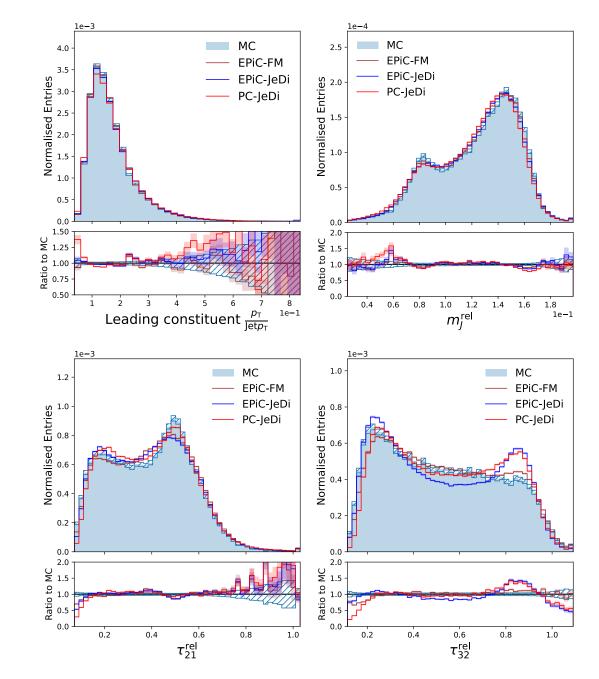
q

 \rightarrow \rightarrow

q/g

Results JetNet30 1/2

- Conditioned version (mass, p_T^{jet})
- Unconditioned version
- Generate conditioning with normalizing flow
- Comparison to EPiC GAN and PC-JeDi
- Midpoint ODE solver with 200 model passes
- Substructure most challenging to learn



07/11/2023

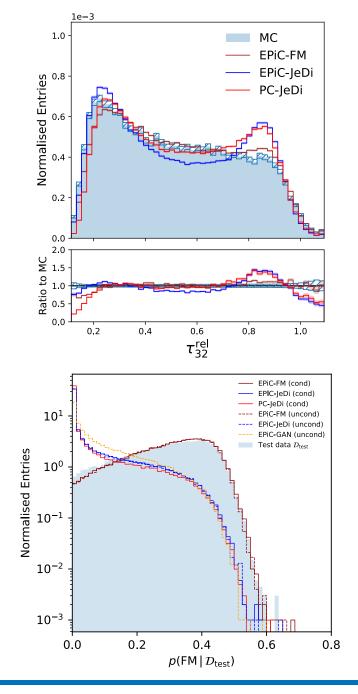
Results JetNet30 2/2

- KLD instead of Wasserstein distance
 - Unintuitive results for W1 on some distributions
- Multi-Classifier Score (ParticleNet)

 $NLP(c) = -E_{x \sim D_{Test}} \log p(c|x)$

- EPiC-FM outperforms all models
- Conditioned models are slightly better
- Substructure most challenging to learn

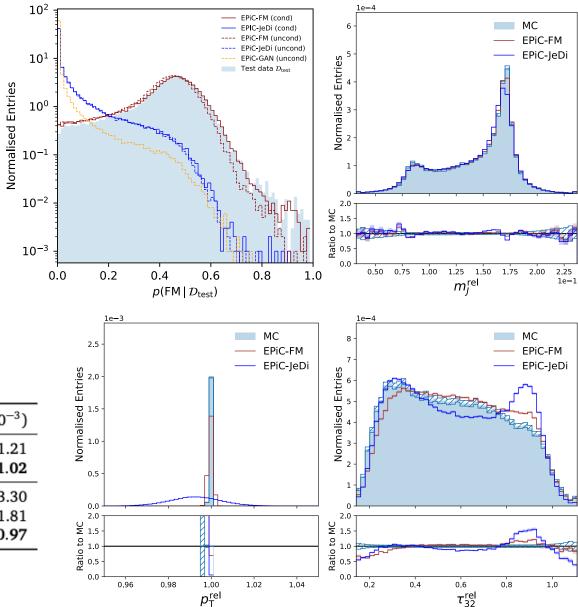
Generation	Model	NLP	$\mathrm{KL}^{m}(\times 10^{-3})$	$\mathrm{KL}^{p_T^{\mathrm{const}}}(\times 10^{-3})$	$\text{KL}^{\tau_{21}} (\times 10^{-3})$	$\mathrm{KL}^{\tau_{32}}(\times 10^{-3})$
Conditional	PC-JeDi EPiC-JeDi EPiC-FM	3.08 3.1 1.35	8.56 ± 0.75 5.26 ± 0.51 3.77 ± 0.50	$\begin{array}{c} 3.25 \pm 0.09 \\ 2.99 \pm 0.05 \\ \textbf{2.03} \pm \textbf{0.02} \end{array}$	$\begin{array}{c} 12.82 \pm 1.16 \\ \textbf{7.81} \pm \textbf{0.61} \\ \textbf{7.40} \pm \textbf{0.64} \end{array}$	$27.08 \pm 1.40 \\ 17.34 \pm 1.08 \\ \textbf{8.09} \pm \textbf{0.93}$
Unconditional	EPiC-GAN EPiC-JeDi EPiC-FM	3.43 3.11 1.38	$\begin{array}{c} \textbf{3.71} \pm \textbf{0.42} \\ \textbf{18.42} \pm \textbf{1.12} \\ \textbf{5.80} \pm \textbf{0.54} \end{array}$	$\begin{array}{c} 3.33 \pm 0.03 \\ 3.73 \pm 0.08 \\ \textbf{2.03} \pm \textbf{0.01} \end{array}$	$\begin{array}{c} 8.28 \pm 0.76 \\ 8.00 \pm 0.80 \\ 7.69 \pm 0.71 \end{array}$	$\begin{array}{c} 17.68 \pm 0.91 \\ 15.27 \pm 1.35 \\ \textbf{9.24} \pm \textbf{1.00} \end{array}$



Results JetNet150

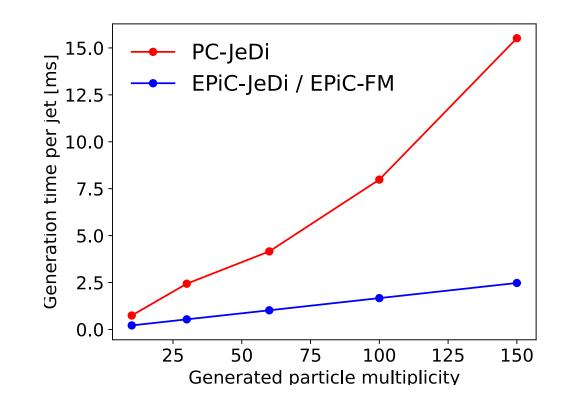
- Conditioned on mass and p_T vs. unconditioned
- Comparison to EPiC GAN
- PC-JeDi too slow for 150 particles
- Similar behaviour as for 30 particles > EPiC-FM outperforms all models
- Conditioned models are slightly better

Generation	Model	NLP	$\mathrm{KL}^{m}(\times 10^{-3})$	$\mathrm{KL}^{p_T^{\mathrm{const}}}(\times 10^{-3})$	$\text{KL}^{\tau_{21}}(\times 10^{-3})$	$KL^{\tau_{32}}(\times 10^{-3})$
Conditional	EPiC-JeDi EPiC-FM	5.67 0.12	$\begin{array}{c} 9.10 \pm 0.79 \\ \textbf{4.30} \pm \textbf{0.53} \end{array}$	$6.42 \pm 0.76 \\ \textbf{0.84} \pm \textbf{0.02}$	$\begin{array}{c} 14.32 \pm 1.08 \\ \textbf{9.43} \pm \textbf{0.61} \end{array}$	$\begin{array}{c} 19.92 \pm 1.21 \\ \textbf{11.22} \pm \textbf{1.02} \end{array}$
Unconditional	EPiC-GAN EPiC-JeDi EPiC-FM	11.6 5.70 0.98	6.50 ± 0.63 27.46 ± 1.24 12.95 ± 0.90	$\begin{array}{c} 2.22 \pm 0.09 \\ 6.39 \pm 0.60 \\ \textbf{0.87} \pm \textbf{0.02} \end{array}$	20.60 ± 1.55 20.15 ± 1.25 10.59 ± 0.88	$69.64 \pm 3.30 \\ 36.50 \pm 1.81 \\ 12.14 \pm 0.97$



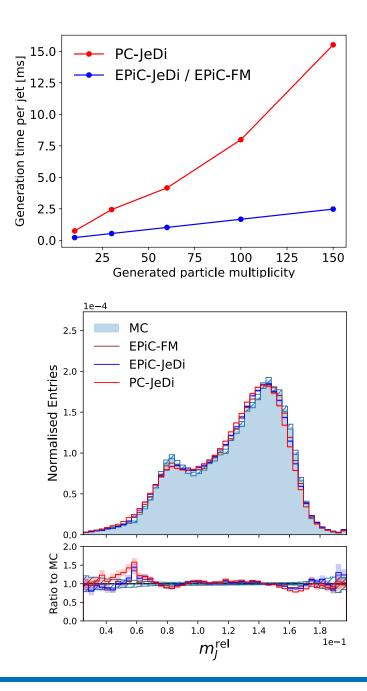
Timing Evaluation

- Better scaling behaviour for EPiC layers
 - 6.2x faster at 150 particles
- Effect increases for larger point clouds like calorimeter showers
- Slower than GANs
- Complementary to distillation approaches
 - See PC-Droid Talk [2307.06836]

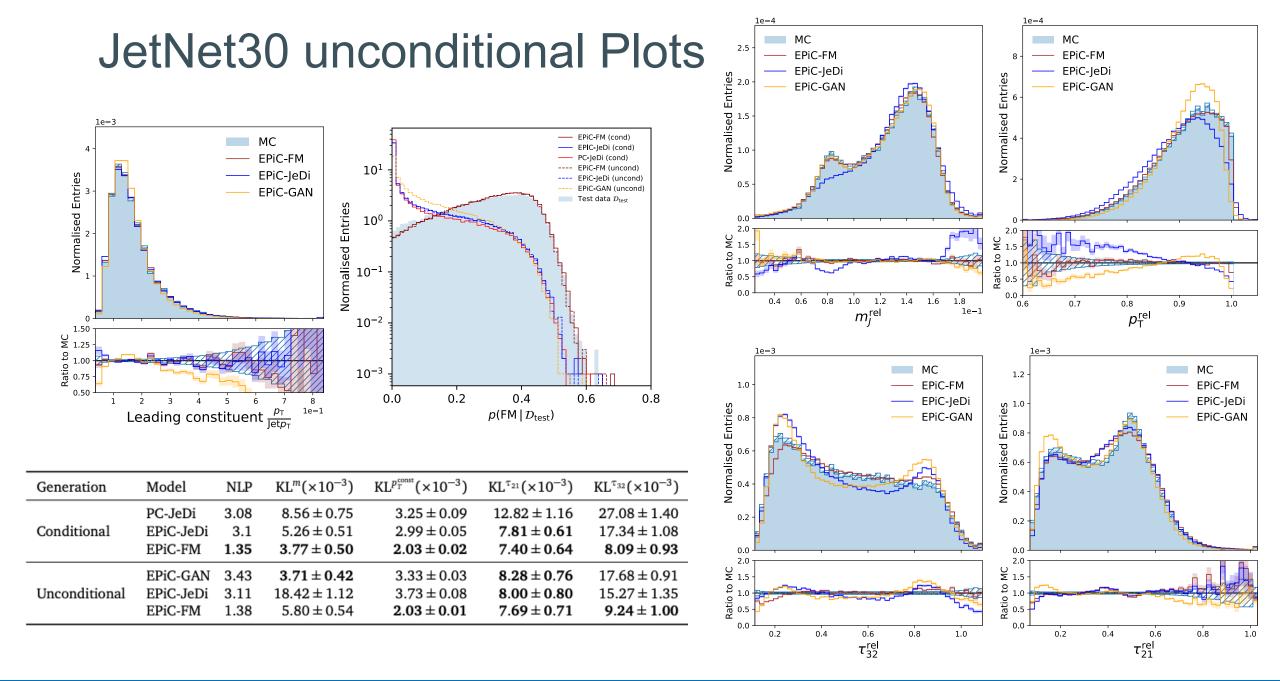


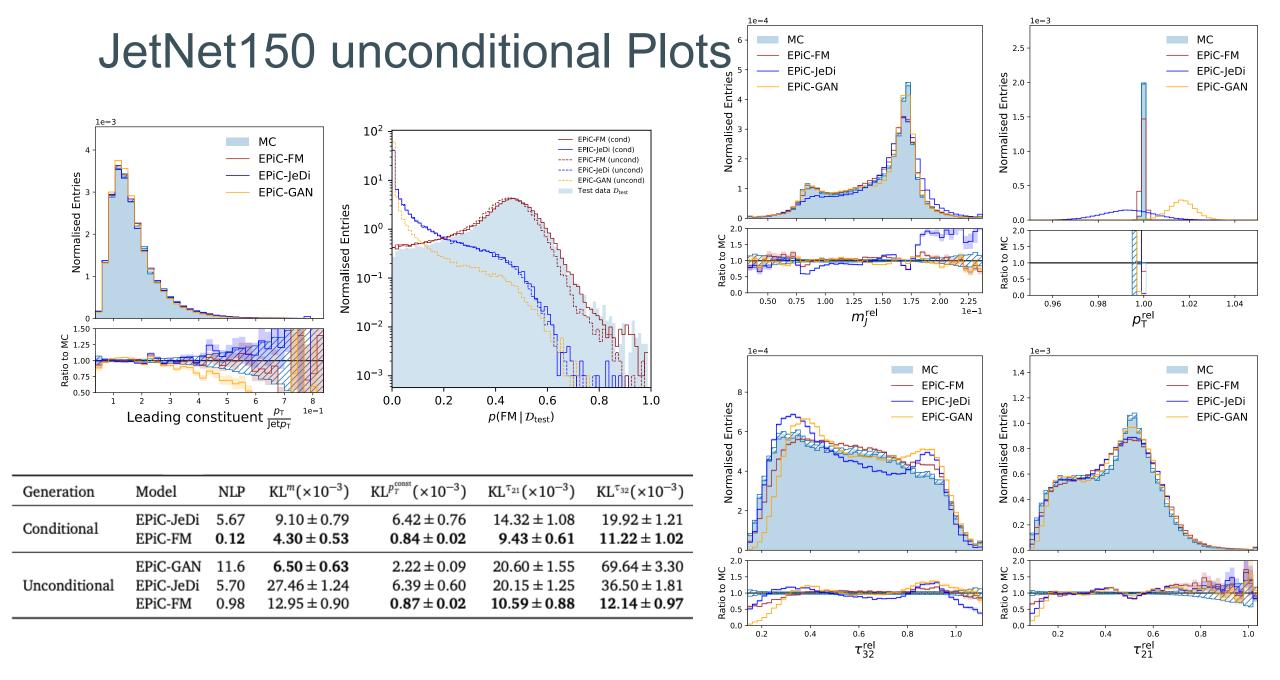
Conclusion

- Generative ML can speed up MC simulations
- Points Clouds are the natural way to represent jets
- We introduce two new models
 - EPiC-FM
 - EPiC-JeDi
- Significantly better scaling behaviour while keeping performance of previous transformer approaches
- EPiC-FM is simpler and performs better than previous diffusion-based models
- Paper on <u>arxiv: 2310.00049</u>



Additional Slides





Solver Comparison

Generation	Model	Sampler	FPND	$W_1^m(imes 10^{-4})$	$W_1^{p_T}(\times 10^{-4})$	$W_1^{EFP}(imes 10^{-5})$	$W_1^{\tau_{21}}(imes 10^{-3})$	$W_1^{\tau_{32}}(imes 10^{-3})$	$W_1^{D_2}(imes 10^{-3})$
EPiC-JeDi Conditional		EM (SDE)	0.29	16.96 ± 2.00	5.32 ± 1.10	3.47 ± 0.38	7.84 ± 0.77	26.36 ± 1.41	$\boldsymbol{0.81\pm0.07}$
	EPiC-JeDi	Midpoint	0.42	8.29 ± 1.20	14.67 ± 1.38	1.76 ± 0.22	$\boldsymbol{5.09 \pm 0.43}$	14.19 ± 0.83	1.35 ± 0.22
		Euler	0.39	8.65 ± 1.14	14.65 ± 1.68	1.79 ± 0.25	5.60 ± 0.46	13.83 ± 1.11	1.37 ± 0.17
	EPiC-FM	Midpoint	0.11	5.12 ± 1.18	$\boldsymbol{3.36\pm0.98}$	1.10 ± 0.26	7.54 ± 0.84	16.33 ± 1.21	0.97 ± 0.17
I		Euler	0.19	13.26 ± 1.85	10.95 ± 1.40	3.11 ± 0.35	10.54 ± 1.12	18.72 ± 1.36	1.13 ± 0.11
EPiC-Je Unconditional EPiC-FN	EPiC-JeDi	EM (SDE)	0.77	16.92 ± 1.36	14.52 ± 1.73	2.88 ± 0.20	12.62 ± 0.82	12.09 ± 0.75	2.19 ± 0.18
		Midpoint	1.63	37.54 ± 1.91	33.57 ± 1.48	8.08 ± 0.40	7.71 ± 0.99	15.73 ± 1.17	3.69 ± 0.19
		Euler	1.64	37.10 ± 1.72	32.63 ± 1.59	8.33 ± 0.44	8.56 ± 0.87	14.29 ± 0.86	3.86 ± 0.18
	EDIC EM	Midpoint	0.14	7.69 ± 0.97	$\textbf{3.39} \pm \textbf{0.98}$	1.45 ± 0.30	7.77 ± 0.80	14.97 ± 1.39	$\textbf{0.94} \pm \textbf{0.17}$
		Euler	0.39	30.16 ± 1.78	17.55 ± 1.49	6.43 ± 0.42	8.41 ± 0.72	23.53 ± 1.37	1.40 ± 0.10

JetNet30, all solvers with 200 model passes

Generation	Model	Sampler	FPND	$W_1^m(imes 10^{-4})$	$W_1^{p_T}(\times 10^{-4})$	$W_1^{EFP}(imes 10^{-5})$	$W_1^{\tau_{21}}(imes 10^{-3})$	$W_1^{\tau_{32}}(imes 10^{-3})$	$W_1^{D_2}(imes 10^{-3})$
EPiC-JeDi Conditional		EM (SDE)	0.26	10.12 ± 2.05	6.46 ± 0.78	5.77 ± 0.81	7.60 ± 0.42	31.34 ± 1.52	1.97 ± 0.23
	EPiC-JeDi	Midpoint	0.52	6.61 ± 1.05	18.89 ± 1.25	4.78 ± 0.62	7.51 ± 0.43	21.15 ± 1.25	3.13 ± 0.23
	Euler	0.47	6.77 ± 1.55	18.80 ± 1.29	4.97 ± 0.71	8.73 ± 0.58	21.77 ± 1.29	3.39 ± 0.16	
EPiC-FM	Midpoint	0.12	$\boldsymbol{3.74\pm0.89}$	3.14 ± 1.07	$\pmb{2.30 \pm 0.42}$	8.51 ± 0.98	$\textbf{20.67} \pm \textbf{1.33}$	1.47 ± 0.19	
	EPIC-FIVI	Euler	0.15	4.08 ± 0.88	14.24 ± 1.18	2.38 ± 0.49	8.92 ± 0.87	22.54 ± 1.04	$\textbf{0.65} \pm \textbf{0.12}$
] Unconditional	EPiC-JeDi	EM (SDE)	0.52	31.37 ± 2.53	8.46 ± 1.29	13.79 ± 0.91	8.82 ± 0.62	21.56 ± 1.65	3.30 ± 0.19
		Midpoint	1.93	66.07 ± 2.05	35.04 ± 1.51	27.84 ± 0.86	8.75 ± 0.97	11.67 ± 0.60	6.24 ± 0.26
		Euler	1.90	66.85 ± 2.14	35.67 ± 1.53	28.03 ± 0.97	9.90 ± 0.89	11.40 ± 0.82	6.30 ± 0.19
EPiC	EPiC-FM	Midpoint	0.18	10.77 ± 1.12	$\textbf{3.25}\pm\textbf{0.89}$	4.03 ± 0.37	9.37 ± 0.74	19.85 ± 1.29	1.11 ± 0.18
	EPIC-FIVI	Euler	0.47	31.86 ± 2.05	21.79 ± 1.45	10.66 ± 0.78	9.65 ± 0.91	28.16 ± 1.43	1.52 ± 0.15

JetNet150, all solvers with 200 model passes

07/11/2023

Hyperparameter Choices

Hyperparameter	Value
EPiC layers	6
EPiC global dimensionality	10
Hidden dimensionality	128
Activation function	LeakyReLU(0.01)
Adam-W [91] learning rate	10 ⁻³
Learning rate scheduling	Cosine with warm-up
Warm-up epochs	1,000
Batch size	1,024
Training epochs	10,000
Model weights	~ 560,000
Training events	~ 110,000
Test events	~ 27,000