

Generalization Properties of Jet Classification

Institut für Experimentalphysik, Universität Hamburg, Germany sebastian.guido.bieringer@uni-hamburg.de

Universität Hamburg

Jet Classification Surrogates

Sebastian Bieringer

Sebastian Bieringer, Gregor Kasieczka, Jan Kieseler

09.11.2023 - ML4jets 2023

HELMHOLTZ

Sebastian Bieringer

Jet Classification Surrogates

Sebastian Bieringer

Jet Classification Surrogates

Classification Surrogates

Is this evaluation also sensitive to $X \rightarrow Y + Z?$

Sebastian Bieringer

Jet Classification Surrogates

Classification Surrogates

No, its not!

Generative Model (Classification Surrogate)

Sebastian Bieringer

Jet Classification Surrogates

The Toy Setup

Sebastian Bieringer

Jet Classification Surrogates

[2] https://gist.github.com/francois-rozet/fd6a820e052157f8ac6e2aa39e16c1aa [3] https://arxiv.org/pdf/2210.02747 [4] https://github.com/IntelLabs/bayesian-torch [5] https://arxiv.org/pdf/2305.10475

Sebastian Bieringer

Jet Classification Surrogates

Bayesian CFM

 $\frac{t}{--}(x)$

Continuous Normalizing Flow:

- Flow $\phi : [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$ defined via

$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(x) = v_t(\phi_t(x)) = \tilde{v}_t(x,\theta)$$

- solve the ODE to train and sample
- linear trajectory
- transforms probability distributions

$$p_t(x) = p_0\left(\phi_t^{-1}(x)\right) \det \left[\frac{\partial \phi_t}{\partial x}\right]$$

Bayesian Conditional Flow Matching:

- Bayesian loss $\mathscr{L}_{BNN} = KL\left[q(\theta), p\left(\theta \mid x\right)\right] =$
- connect both $\mathscr{L}_{B-CFM} = \langle \mathscr{L}_{CFM} \rangle_{\theta \sim q(\theta)} + c KL[q(\theta), p(\theta)]$, with $q(\theta)$ uncorrelated Gaussian shape

Sebastian Bieringer

Jet Classification Surrogates

Conditional Flow Matching:

- loss that does not ODE solving

$$\mathscr{L}_{\mathrm{FM}}(\theta) = \mathbb{E}_{t,p_t(x)} \left\| v_t(x) - \tilde{v}_t(x,\theta) \right\|^2$$

- by choice of p_t and v_t

$$\mathscr{L}_{\text{CFM}}(\theta) = \mathbb{E}_{t,p_t(x),\epsilon} \left[\tilde{v}_t \left((1-t)x_0 + t\epsilon, \theta \right) - \left(\epsilon - x_0 \right) \right]$$

- not a log-Likelihood loss

$$-\int d\theta q(\theta) \log p(x \mid \theta) + KL[q(\theta), p(\theta)] + \text{ const.}$$

Detector Smearing Distribution DASHH

- pick a jet event
- select the 100 events with $p_T, \eta, \phi, E_{\text{jet}}, n_{\text{jet}}$ closest

Jet Classification Surrogates

Detector Smearing Distribution DASHH

- pick a jet event
- select the 100 events with $p_T, \eta, \phi, E_{\text{jet}}, n_{\text{jet}}$ closest

Sebastian Bieringer

Jet Classification Surrogates

Learned Detector Smearing Distribution DASHH

Sebastian Bieringer

Jet Classification Surrogates

Learned Detector Smearing Distribution DASHH

Sebastian Bieringer

Jet Classification Surrogates

Learned Detector Smearing Distribution DASHH

Sebastian Bieringer

Jet Classification Surrogates

Predicted ROC

Sebastian Bieringer

Jet Classification Surrogates

Unphysical Inputs

Sebastian Bieringer

Jet Classification Surrogates

Unphysical Inputs

Sebastian Bieringer

Jet Classification Surrogates

Unphysical Inputs

Sebastian Bieringer

Jet Classification Surrogates

Sebastian Bieringer

Jet Classification Surrogates

Conclusion

- CFM model can can predict the indistribution behavior of a large classifier well
 - Independent of detector-level data
 - Can be shared with in analysis
- Further investigation of Bayesian methods to fix out-of-distribution predictions for all dimensions

Jet Classification Surrogates

09.11.2023 19

1.0

0.8

Fake rate 10-5

 10^{-3}

 10^{-1}

0.0

0.2

0.4

Efficiency

B-CFM

 10^{4}

0.8

0.6

 $p_T = 959.2 \text{ GeV}$

Effects of the Prior Parameter *C* **DASHH**.

Bayesian loss
$$\mathscr{L}_{BNN} = \mathrm{KL}\left[q(\theta), p\left(\theta \mid x\right)\right] = -\int \mathrm{d}\theta \, q(\theta) \log p\left(x \mid \theta\right) + \mathrm{KL}[q(\theta), p(\theta)] + \text{ const.}$$

connect both
$$\mathscr{L}_{B-CFM} = \langle \mathscr{L}_{CFM} \rangle_{\theta \sim q(\theta)} + cKL$$

Sebastian Bieringer

Jet Classification Surrogates

What if only trained on truth? DASHH.

p_T = -0.852

Jet Classification Surrogates

Sebastian Bieringer

top jets

not top jets

