Machine Learning for Particle Physics Experiments

Kevin Pedro (Fermilab) November 6, 2023

Prefaces

Bias alert

- This talk leans toward collider physics examples
 - o And CMS in particular
 - o Some connections to other subfields
- Also contains plenty of my personal opinions

Content limitations

- In my <u>last ML plenary</u>, tried to include all relevant conference contributions (CHEP23)
- No way to do that at ML4Jets with over 100 talks!

General disclaimer

- ML is a very fast-moving field
- Sorry if I overlooked (or misstated) your work!

o Just think of it as an opportunity to correct the speaker...

What is our goal?

• My goals:

- 1. To learn more about particle physics
- 2. Hopefully, to make discoveries!
- ML is a very useful *tool* for these goals → *ML for physics* o If applied correctly and efficiently
 - It can also be an unlimited time sink...
- Particle physics data and problems can be very different from industry MASA, and MAS
 - Among other things, this is a great sales pitch to funding agencies
- Role of ML expert community: not just to develop new cutting-edge tools, but to make them *usable* Requires a balance of phenomenological studies vs. experimental integration
 - Integration is often thankless, but has long-term impact, and helps to develop best practices
 - Also strongly related to *robustness* and *interpretability*
- Ultimate goal: any physicist can extract the best physics from their data *without* being an ML expert

What's stopping us?

- Humans struggle to reason at high dimensionality
- Classical algorithms are *fundamentally limited*
 - o Unacceptable errors from simplifying assumptions as precision increases
- ML can take us *much further*
 - Can we execute ML algorithms within our computing budget?
 - o Can we learn what the machine learns?

- More data: both a solution and a problem
 - Opportunities for most precise measurements and discovery of rare processes
 - Challenges to process, store, and analyze this upcoming flood of data
- Can we do more physics, *more efficiently*?
- As experiments grow in size and intensity, data grow in complexity

Where can we use ML?

Generation

Integration Sampling Showering/ hadronization Tuning Uncertainties

. . .

Simulation Generative

. . .

Refinement Tuning End-to-end Pileup Electronics modeling

. . .

Digitization

Trigger Anomaly detection Low-latency On-detector

High-Level

Calibration Tracking Clustering

. . .

. . .

Reconstruction

. . .

Analysis

Classification Regression Simulation-based inference

Real-time operations for accelerators, telescopes...

. . .

Compression Resource allocation Code generation

7 Years of ML4Sim

- From my database of 92 ML4Sim-related papers
- Normalizing flows and diffusion models supplanting traditional GANs and VAEs
- Diffusion model takeoff in particular looks almost exponential...
 - An *entire session* of ML4Jets dedicated just to these models!
- Some growing interest in autoregressive models
 Perhaps motivated by success in industry (GPT)
- Common datasets and metrics from CaloChallenge are a big step forward to be able to compare different approaches → summary on Thursday!
- *Experiential knowledge* from ATLAS Run 2/3 deployment of FastCaloGAN also very valuable

"Other" = non-generative models (FCNs, CNNs, GNNs), typically regression-based approaches

Simulation

• End-to-end models like <u>FlashSim</u> that produce analysis-level observables from generator input have massive utility: essentially eliminate statistical fluctuations

o ... for end-stage analysis, where nothing is rapidly varying

- But accurate simulation is needed *throughout* the lifecycle of an experiment
- > Models that target simulated hits are *more broadly* applicable
 - o Complementary use cases for both approaches

Pileup: An Overlooked Case

- "Classical" mixing: overlay n_{PU} distinct
 Digitization
 simulated minimum bias events per bunch crossing
 on top of signal event → massively I/O intensive
- "Premixing": perform overlay in advance, save hits after aggregation (digitized format)
 - Leads to O(PB) samples that have to be served throughout the grid with very high availability
 - Better than classical mixing, but still disk- and network-intensive
- Viewed as a solved problem... but substantial room for improvement
 - Generative ML could compress O(PB) samples into O(MB) model + RNG & conditioning info
 → completely eliminate premixing resource usage, in exchange for training
- Straightforward to repurpose detector simulation surrogates, but also possible improvements here

 Train on data and realize long-awaited data mixing?
- Stay tuned for DeGeSim talk on Friday!

Anomaly Triggers

- ~99.999% of LHC data is discarded (can't write 600 TB/s to disk)
 - Most of it is uninteresting... but how do we know we're picking the most interesting 0.001%?
- CMS approach: train a (variational) autoencoder on zero bias data
 - o CICADA: Calorimeter Image Convolutional Anomaly Detection Algorithm
 - Uses calorimeter trigger inputs
 - o AXOL1TL: Anomaly eXtraction Online Level-1 Trigger Lightweight
 - Uses global trigger objects (jets, MET, leptons)
- Deploy at L1 trigger on FPGA using hls4ml
 - o Achieve latencies as low as 50 ns!
 - How do they do it? Check out Tuesday's talk!
- These triggers will operate for *next 2 years* of LHC Run 3
- Looking forward to very interesting data...

Detector Intelligence

Relative resolution 0.80 0.80 0.80

0.80

0.75

0.70

0.65

0.60

1.6

- CMS High Granularity Calorimeter will have 6 million channels

 No way to read all of them in 12 μs latency
 Compress using on-detector ASIC running CNN encoder!
- Latest advance: train encoder using differentiable Earth Mover's Distance loss (implemented as CNN surrogate)
 - o Substantial improvement in electron resolution
- ✤ Into the future: *smart pixels* for single-layer tracking
 - o Use Mixture Density Network to predict parameters and errors

Classification

	All classes		$H \to b\bar{b} H \to c\bar{c} H \to gg$		$H \to 4q$	$I \to 4q H \to \ell \nu q q' t \to b q q'$		$t \rightarrow b \ell \nu$	$W \to qq'$	$Z \to q \bar{q}$	Analysis	
	Accuracy	AUC	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	Rej _{99%}	Rej _{50%}	Rej _{99.5%}	$\operatorname{Rej}_{50\%}$	$\operatorname{Rej}_{50\%}$	Analysis
PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159	-
P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204	
ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283	
ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402	_
ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311	-

- <u>ML4Jets 2018</u>: <u>comparison studies</u> eventually led to the <u>Greatest Of All Taggers</u> (GOAT)
 o Performance slightly exceeding ParticleNet
- Particle Transformer (ParT) is a *massive step forward* Many more parameters, but fewer operations (→ faster!)

 \circ Uses pairwise features from 4-vectors \rightarrow *domain knowledge*

arXiv:2202.037

• Other transformers like <u>GN2X</u> also being explored: $H \rightarrow b\bar{b} \operatorname{Rej}_{50\%} = 300$

Architecture	Accuracy	AUC	$1/\epsilon_B$	# Params	
LorentzNet _{<i>n</i>_{bidden}=3}	0.9056	0.9623	136	120	
$nPELICAN_{C_{hidden}=10}$	0.9208	0.9747	332	101	
$nPELICAN_{C_{hidden}=3}$	0.9179	0.9722	272	31	
$nPELICAN_{C_{hidden}=2}$	0.9169	0.9716	255	21	
$nPELICAN_{C_{hidden}=1}$	0.8951	0.9480	70	11	
arXiv:2310.16121					

 Opposite side of the spectrum: PELICAN achieves competitive performance with only O(100) parameters!
 O Incorporates even more domain knowledge

$$\circ$$
 n_{param} = 10C_{hidden} + 1

ML4Jets 2023

Kevin Pedro

Beyond Classification: Clustering

• Upcoming high granularity calorimeters will measure particle showers with *unprecedented accuracy*

o No known classical algorithm can handle this level of information

- Leading approach: GravNet architecture and Object Condensation loss
 o Graphs formed in latent space; each hit scored for seeding
- Latest tests on simplified geometry (still 3M channels):
 O Good physics performance in high pileup, *linear* inference scaling!

• Alternative architecture: SPVCNN

125

150

175

Z boson p_T (GeV)

200

• Feature transforms in point space, convolutions in voxel space

o Fast and memory-efficient

100

u⊥ resolution (GeV) 8 ⅔ ∞ ∞

15

75

• Easy to accelerate on GPU: competitive performance w/ domain algorithm and 16× faster

ML4Jets 2023

Beyond Classification: Tracking

- GNN architectures also work well for tracking
- ExaTrkX developing solutions for various experiments
 - \circ Robust to noise for track $p_T > 1$ GeV in collider setup
 - o Again, *linear* inference!
 - Remember, naïve expectation is O(n²) scaling (less naïve: n log n)

arXiv:2103.06995

- Similar architecture can be applied to LArTPC detectors in neutrino experiments
 - Among first users of modern ML (CNNs) for classification!
- Robust performance vs. classical algorithm
 - Also fast: 0.005 s/evt inference on GPU with batching

Computing for ML

- ML algorithms use a restricted set of operations (mostly matrix multiplications)
 - o Natural and easy to accelerate on specialized coprocessors
- *Most flexible* approach: inference as a service
 - Abstract away specific computing elements: client makes request, server delivers
 - \circ Example: ~10× speedup in ParticleNet on GPU vs. CPU
 - Algorithm latency becomes essentially *invisible* with asynchronous calls in offline processing
 - Can batch *across events* for optimal GPU utilization
 → maximize throughput
- Demonstrated for <u>CMS</u>, <u>protoDUNE</u>, <u>LIGO</u>
 - o Use CPUs, GPUs, FPGAs, IPUs... with zero code changes!

Constrained Optimization

hyperparameter (convergence rate)

damping to ensure convergence

- *General principle*: you can't optimize for two things at once

 Instead, optimize for one thing with *constraints* on others (Lagrange)
 Multiple loss terms are one approach to encode domain knowledge
- $\mathcal{L} \to \mathcal{L}_1 + \lambda \mathcal{L}_2 + \cdots$; set λ by trial and error \to objectively suboptimal
- modified differential method of multipliers (mdmm): [paper, blog, code]

 $\mathcal{L} \to \mathcal{L}_1 - \lambda(\varepsilon - \mathcal{L}_2) + \delta(\varepsilon - \mathcal{L}_2)^2$

gradient ascent

constraint

learnable

- First known usage in HEP: balance per-event and ensemble losses for ML-based refinement of classical FastSim
 - o Minimize per-event: bad ensemble value
 - o Minimize ensemble: per-event still good!
 - o Learn more later today!
- Find Pareto front (concave or convex) and pick tradeoff Kevin Pedro

Domain Adaptation

- Various techniques: adversarial training, gradient reversal, MMD, DisCo, etc.
 o Frequently explored in methods papers; occasionally by experiments
- Recent results in astrophysics: (simulations less reliable, many data sources to compare)
 - o DA (using MMD) increases robustness against adversarial attacks
 - DA using semi-supervised *contrastive learning* (adaptive clustering + entropy separation) has multiple benefits:

- Alignment of source and target classes: better performance (on both!), *physically meaningful* latent space
- Anomaly detection capabilities: known & unknown classes separated

With Domain Adaptaion

Barred spiral
 Barred spiral
 Round smooth
 A Round Smooth
 Lens

- From last year: semi-supervised information bottleneck to learn optimal mass variables (beats M_{T2} in semivisible final state)
- How to scale up to higher dimensions, tougher questions?

Interpretability

• Sparsity-inducing categorical prior can learn optimal latent dimension, improve both performance and robustness

- Still a long way from learning what the machine is learning...
- But *new techniques* are bringing us closer than ever before!

 New approach to decompose superposition/polysemanticity in LLM neurons: finds consistent features between different networks

Uncertainty

- Uncertainty quantification: never convinced of its importance
 - Classifiers are just functions: propagate input feature uncertainties and call it a day
- But a different story for generative models
 - o LLMs are known to "hallucinate" (really confabulation)
 - o Would we know if our models do the same?
- Also important for parameter estimation tasks
 Mixture Density Networks are useful there
- Uncertainty *reduction*, on the other hand: the name of the game
 - \circ Uncertainty-aware training handles in-domain and out-of-domain data equally well for $H\to\tau\tau$
- Looking forward to more discussion throughout the week!

Foundation Models

- A growing trend in industry:
 - o LLMs: finetuning or simply tokenizing additional data
 - Apply already-learned relationships to new information
 - o Image generation: <u>textual inversion</u>, low-rank adaptation
- Back to ParT: not just >2M parameters, but trained on *100M jets*
 - 2 orders of magnitude higher than previous datasets
 - Fine-tuned version performs *better* on those previous datasets than fully retrained version!
 - Learns generalized physics that can apply to many datasets
- Maybe the *first glimmer* of foundation models for physics
 - o Build on techniques mentioned here (and others) to improve generalization and physics learning
 - Diffusion models could be foundation for generative tasks...

	Accuracy	AUC	Rej _{50%}	Rej _{30%}
P-CNN	0.930	0.9803	201 ± 4	759 ± 24
PFN		0.9819	247 ± 3	888 ± 17
ParticleNet	0.940	0.9858	397 ± 7	1615 ± 93
JEDI-net (w/ $\sum O$)	0.930	0.9807		774.6
PCT	0.940	0.9855	392 ± 7	1533 ± 101
LGN	0.929	0.964		435 ± 95
rPCN		0.9845	364 ± 9	1642 ± 93
LorentzNet	0.942	0.9868	498 ± 18	2195 ± 173
ParT	0.940	0.9858	413 ± 16	1602 ± 81
ParticleNet-f.t.	0.942	0.9866	487 ± 9	1771 ± 80
ParT-f.t.	0.944	0.9877	691 ± 15	2766 ± 130
	-	-		

arXiv:2202.03772

Conclusion

- ML has impacts *throughout* particle physics
 - o Every subfield: collider, neutrino, astro, accelerator, computing, and beyond
 - o Every step: simulation, digitization, triggering, reconstruction, analysis, and more
- The field is maturing:
 - o Converging on the "right ways" to perform (at least some) tasks
 - o Deploying ML algorithms at larger scales and for more types of problems
 - Building a new toolkit—including mixture density networks, mdmm, contrastive learning, and more—to make our ML more *reliable* and more *physically meaningful*
- *Interpretability* and *uncertainty* are two big outstanding (and related) questions
 O Hopefully the new toolkit helps us make more progress
- Foundation models will help achieve our ultimate goal: for *everyone* to do the *best physics*
- > The future is bright!

Simulation Landscape

"FullSim"

- Common software framework (i.e. Geant4)
 - Experiments can provide additional code via user actions
- Explicit modeling of detector geometry, materials, interactions w/ particles

"FastSim"

- Usually experiment-specific framework
- Implement approximations: analytical shower shapes (e.g. GFLASH), truth-assisted track reconstruction, etc.

Delphes

- Ultra-fast parametric simulation
- Used for phenomenological studies, future projections, etc.

Simulation is crucial in HEP!

ML4Sim Landscape

- Options to use ML for sim:
 - 1. Replace or augment (part or all of) Geant4
 - 2. Replace or augment (part or all of) FastSim
- Goals:
 - 1. Increase speed while preserving accuracy
 - 2. Preserve speed while increasing accuracy
- ML can also create faster, but less accurate simulation
 o à la existing classical FastSim
 - then augment w/ more ML to improve accuracy
- Another option: replace entire chain ("end-to-end")
 - o Exciting prospect, potentially complements other cases

Taxonomy

- Generative models ("replace"):
 - o Usually *stochastic*
 - o Generative Adversarial Networks (GANs)
 - o Variational Autoencoders (VAEs)
 - o Normalizing Flows (NFs)

- Refinement techniques ("augment"):
 O Usually *deterministic*
 - o Classification-based (reweighting)
 - o Regression-based (correcting)

10-1

10⁰

10¹

10²

10³

Pixel energy [MeV]

10⁴

Metrics

- Speed only matters if needed accuracy is achieved
 O Wrong answers can be obtained infinitely fast
- Looking at 1D histograms: not good enough!
 O Can miss high-dimensional correlations
- Best category: integral probability metrics

 $D_{\mathcal{F}}(p_{\text{real}}, p_{\text{gen}}) = \sup_{f \in \mathcal{F}} |\mathbb{E}_{\mathbf{x} \sim p_{\text{real}}} f(\mathbf{x}) - \mathbb{E}_{\mathbf{y} \sim p_{\text{gen}}} f(\mathbf{y})|$

- \circ *Wasserstein distance* W_1 : \mathcal{F} is set of all K-Lipschitz functions
- Only works well in 1D, biased in high-D
 Maximum mean discrepancy (MMD): *F* is unit ball in reproducing kernel Hilbert space
 - Depends on choice of kernel

- *Fréchet distance*: W₂ distance between Gaussian fits to (high-D) feature space
 - Features can be hand-engineered or obtained from NN activations
- Another interesting category: *classifier scores* Train NN to distinguish real vs. generated
 AUC score ranges from 0.5 to 1.0
- *Fréchet Particle Distance* most clearly distinguishes between two similar approaches (message passing GAN and generative adversarial particle transformer)

space		FPD $\times 10^3$	KPD $\times 10^3$	$W_1^M \times 10^3$
	Truth	0.08 ± 0.03	-0.006 ± 0.005	0.28 ± 0.05
	MPGAN	0.30 ± 0.06	-0.001 ± 0.004	0.54 ± 0.06
arXiv:2211.10295	GAPT	0.66 ± 0.09	0.001 ± 0.005	0.56 ± 0.08