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Prefaces

Bias alert

 This talk leans toward collider physics examples
o And CMS in particular
0 Some connections to other subfields

 Also contains plenty of my personal opinions L
—————————————————————————————————————————————————————— Content limitations

conference contributions (CHEP23)
* No way to do that at ML4Jets with over 100 talks!

f—— e ———— — a1

ML is a very fast-moving field

i « Sorry if | overlooked (or misstated) your work! i < /

_________________________________________________________________
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https://indico.jlab.org/event/459/contributions/12492/

What Is our goal?

~ “Bullet:Cluster Cgjlision * -

My goals:
1. To learn more about particle physics
2. Hopefully, to make discoveries!
ML is a very useful tool for these goals — ML for physics
o If applied correctly and efficiently
o It can also be an unlimited time sink...
Particle physics data and problems can be very different from industry
0 We naturally refine existing ML techniques and develop new ones — physics for ML
= Among other things, this is a great sales pitch to funding agencies
Role of ML expert community: not just to develop new cutting-edge tools, but to make them usable
0 Requires a balance of phenomenological studies vs. experimental integration
= |ntegration is often thankless, but has long-term impact, and helps to develop best practices
o Also strongly related to robustness and interpretability
Ultimate goal: any physicist can extract the best physics from their data without being an ML expert
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http://apod.nasa.gov/apod/ap060824.html
http://arxiv.org/abs/astro-ph/0608407

What’s stopping us?

4 * More data: both a solution and a problem
data | hase1- _ -
=y ol o Opportunities for most precise measurements

~300 PB/year .

FAnGA Hees e and discovery of rare processes

3 oaiad g DUNE )
Googe —_— f@'p'; o Challenges to process, store, and analyze this

Internet archive Yearly data volumes

15 B oo upcoming flood of data
i -??00 PB Raw data . o
“ » Can we do more physics, more efficiently?

* AS experiments grow in size
SKA Phase 2 — mid-2020's HL-LHC—-20M - -
~1 EB science data ~1 EB Physics data an d I nte nS I ty, d ata g rOW
in complexity

50 PB raw data

i

* Humans struggle to reason at high dimensionality
» Classical algorithms are fundamentally limited

o0 Unacceptable errors from simplifying assumptions as precision increases
* ML can take us much further

o Can we execute ML algorithms within our computing budget?

o Can we learn what the machine learns?
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Where can we use ML?

> @ e e |
-~ s W Ve,
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Generation Simulation Digitization Trigger Reconstruction  Analysis
Integration Generative Pileup Anomaly detection Calibration Classification
Sampling Refinement Electronics Low-latency Tracking Regression
Showering/ Tuning modeling On-detector Clustering Simulation-based

hadronization End-to-end - . . inference
Tuning

Uncertainties

Compression
Resource allocation
Code generation

Real-time operations
for accelerators,
telescopes...

Everywhere!
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{ Years of ML4SIm )

dis s,
From my database of 92 ML4Sim-related papers Simulation
Normalizing flows and diffusion models 1 ean ——
supplanting traditional GANs and VAEs e i
6 1 3
Diffusion model takeoff in particular looks almost o |
54 —r ather 1 | = | e i

1 =- other

exponential...

o0 An entire session of ML4Jets dedicated just to
these models!

Y
L
|
|

i

Some growing interest in autoregressive models |

Frequency
. e e el

o Perhaps motivated by success in industry (GPT) 2 | IL !
Common datasets and metrics from CaloChallenge i i_ ''''' _i i_': TTUT]
are a big step forward to be able to compare ot ! | ;
different approaches — summary on Thursday! Years since January 2017

Experiential knowledge from ATLAS Run 2/3 “Other” = non-generative models (FCNs, CNNs,

deployment of FastCaloGAN also very valuable GNN), typically regression-based approaches
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One Step vs. End-to-End

—

e Cd OLd B
Aa v <1

-0

Generation Simulation Digitization Trigger Reconstruction  Analysis
\ ) \ ) \ )
Y
Changes O(1 year) Changes O(1 second-1 month) Changes O(1 year)

(geometry, physics models)  (calibrations, radiation damage, algorithms, ...)

» End-to-end models like FlashSim that produce analysis-level observables from
generator input have massive utility: essentially eliminate statistical fluctuations

o ...for end-stage analysis, where nothing is rapidly varying
« But accurate simulation is needed throughout the lifecycle of an experiment
» Models that target simulated hits are more broadly applicable

o Complementary use cases for both approaches
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https://cds.cern.ch/record/2858890

Pileup: An Overlooked Case

. _Classmal mixing: 0\_/erlay Np, distinct _ Digitization
simulated minimum bias events per bunch crossing
on top of signal event — massively I/O intensive

= . “Premixing”: perform overlay in advance, save hits
after aggregation (digitized format)

o Leads to O(PB) samples that have to be served
throughout the grid with very high availability

o Better than classical mixing, but still disk- and
network-intensive

* Viewed as a solved problem... but substantial room for improvement

0 Generative ML could compress O(PB) samples into O(MB) model + RNG & conditioning info
— completely eliminate premixing resource usage, in exchange for training

 Straightforward to repurpose detector simulation surrogates, but also possible improvements here
o Train on data and realize long-awaited data mixing?
o Stay tuned for DeGeSim talk on Friday!
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Anomaly Triggers

~99.999% of LHC data is discarded (can’t write 600 TB/s to disk)

o0 Most of it is uninteresting... but how do we know we’re picking the most
Interesting 0.001%7?

CMS approach: train a (variational) autoencoder on zero bias data

o CICADA: Calorimeter Image Convolutional Anomaly Detection Algorithm
= Uses calorimeter trigger inputs

o0 AXOLI1TL: Anomaly eXtraction Online Level-1 Trigger Lightweight
= Uses global trigger objects (jets, MET, leptons)

Deploy at L1 trigger on FPGA using hls4ml
o Achieve latencies as low as 50 ns!

o0 How do they do it? Check out Tuesday’s talk!

These triggers will operate for next 2 years of LHC Run 3
Looking forward to very interesting data... his 4 ml
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Detector Intelligence

e CMS High Granularity Calorimeter will have 6 million channels S
O N O Way tO r e ad a” O.I: th em in 12 HS Iat en Cy Detector Input Compressed Representation
o0 Compress using on-detector ASIC running CNN encoder!

 Latest advance: train encoder using differentiable Earth Mover’s Distance
loss (implemented as CNN surrogate)

o Substantial improvement in electron resolution
¢ Into the future: smart pixels for single-layer tracking

Encoder on
detector ASIC

0 Use Mixture Density Network to predict parameters and errors

Output:
X with

uncertainty

48x7 bit input
336 bits
T —

Transmit 16 x 3bit outputs 48 bits

-
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https://arxiv.org/abs/2306.04712
https://indico.cern.ch/event/1283970/contributions/5554343

Classification

arXiv:2202.03772
All classes H—bb H-—>ce H-—>qg9g H—4qg H—lvgd [t—bggd’\t—blv W —=qf Z—qq AnalySiS
Accuracy  AUC  Rejso,  Rejsgy,  Rejgoy,  Rejsgy Rejgge, Rejson \Relgosn  Rejsoy Rejs09
PFN 0.772 0.9714 2924 841 75 198 265 797 721 189 159
P-CNN 0.809 0.9789 4890 1276 88 474 0947 2907 2304 241 204
ParticleNet 0.844 0.9849 7634 2475 104 954 3339 10526 11173 347 283
ParT 0.861 0.9877 10638 4149 123 1864 5479 32787 15873 543 402
ParT (plain) 0.849 0.9859 9569 2011 112 1185 3868 \17699/ 12987 384 311
"

o ML4Jets 2018: comparison studies eventually led to the Greatest Of All Taggers (GOAT)

o Performance slightly exceeding ParticleNet
 Particle Transformer (ParT) is a massive step forward
O Many more parameters, but fewer operations (— faster!)
0 Uses pairwise features from 4-vectors — domain knowledge
« Other transformers like GN2X also being explored: H — bb Rejcy, = 300

» Opposite side of the spectrum: PELICAN achieves

Architecture Accuracy AUC  1/eg # Params

LorentzNet,,.. _3 09056  0.9623 136 120 competitive performance with only O(100) parameters!
nPELICANCMM,":ln 0.9208 0.9747 332 101 )

nPELICANG, .+ —3 09179 09722 272 3 o Incorporates even more domain knowledge
nPELICANG,.,.—2 09169 09716 255 2] _

nPELICANG, . — 0.8951  0.9480 70 1 O Nparam = 10Chiggen + 1
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https://indico.cern.ch/event/745718
https://indico.cern.ch/event/745718/contributions/3205082/
https://arxiv.org/abs/1902.09914
https://cds.cern.ch/record/2866601
https://arxiv.org/abs/2202.03772
https://arxiv.org/abs/2310.16121

Beyond Classification: Clustering | -

» Upcoming high granularity calorimeters will measure particle showers
with unprecedented accuracy

o No known classical algorithm can handle this level of information
 Leading approach: GravNet architecture and Object Condensation loss
o Graphs formed in latent space; each hit scored for seeding
o Latest tests on simplified geometry (still 3M channels):

Reconstruction

u, resolution (GeV)

15 FastML 2023

10 - SPVCNN no PU
0 Good physics performance in high pileup, linear inference scaling! . e ol
¥ PF with PU
Hadronic Resolution - 200 PU 15 Computing performance on A100 GPU (80GB) 0 25 100 125 150 175 200
0.5 ’ CTD 2023 e 200 PU events Z boson Pt (Ge\.r‘)
04 o] 2 " “ « Alternative architecture: SPVCNN
-=-kaons PU 200 baseline ﬂ::—_' 1.3 . .
TS @ ot o Feature transforms in point space,
Qo. g1.2 _ el . .
3 : A convolutions in voxel space
= ee ° @ Wi,
o2 |; 1.1 — 5 "D 0'%.0 3 _ o
= \ﬁ' 5., L sed o Fast and memory-efficient
o 8 -
: ool . « Easy to accelerate on GPU:
D S Y S— L L L L competitive performance w/
fransverse Momentum [GeV] Number of hits in Event [K] domain algorithm and 16x faster
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https://indico.cern.ch/event/1252748/contributions/5521495/
https://indico.cern.ch/event/1283970/contributions/5554353/

Beyond Classification: Tracking |

» GNN architectures also work well for tracking

« ExaTrkX developing solutions for various experiments

0 Robust to noise for track pr > 1 GeV in collider setup

o Again, linear inference!

= Remember, naive expectation is O(n?) scaling
(less naive: n log n)

1

=
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« Similar architecture can be applied to
LArTPC detectors in neutrino experiments

o Among first users of modern ML (CNNS)
for classification!

* Robust performance vs. classical algorithm

o0 Also fast: 0.005 s/evt inference on GPU
with batching 13


https://arxiv.org/abs/2103.06995
https://indico.cern.ch/event/1252748/contributions/5521490

Computing for ML

» ML algorithms use a restricted set of operations
(mostly matrix multiplications)

o Natural and easy to accelerate on specialized coprocessors
» Most flexible approach: inference as a service

o0 Abstract away specific computing elements:
client makes request, server delivers

o Example: ~10x speedup in ParticleNet on GPU vs. CPU

= Algorithm latency becomes essentially invisible
with asynchronous calls in offline processing

= Can batch across events for optimal GPU utilization
— maximize throughput

 Demonstrated for CMS, protoDUNE, LIGO
0 Use CPUs, GPUs, FPGAs, IPUs... with zero code changes!
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Coprocessor
(GPU/FPGA/IPU/
etc)

,:“‘ CPUs Coprocessor
(GPU/FPGA/IPU/

etc)
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CMS Simulation Preliminary (13 TeV)
[T T T ' - o ]
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T
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https://cds.cern.ch/record/2872973
https://arxiv.org/abs/2301.04633
https://arxiv.org/abs/2108.12430

Constrained Optimization

CMS Simulation

arXiv:2309.12919

0.0944

« General principle: you can’t optimize for two things at once
o Instead, optimize for one thing with constraints on others (Lagrange)
» Multiple loss terms are one approach to encode domain knowledge
2 L — L1+ AL+ ---;set)by trial and error — objectively suboptimal

» modified differential method of multipliers (mdmm): [paper, blog, code]
learnable hyperparameter (convergence rate)

0.0924

0.0904

0.0884

0.086

0.084

Huber(Refined, FullSim)

0.082

== No MDMM, only MMD loss

"””*”"’7"”’77".'/
1

’””‘*””’*:;7/ r
L i i

No MDMM, only Huber loss

No MDMM, MMD + Huber
MDMM, MMD + Huber, £ =0.086
MDMM, MMD + Huber, £ =0.085
MDMM, MMD + Huber, £=0.084
MDMM, MMD + Huber, £ =0.083
MDMM, MMD + Huber, £=0.082
MDMM, MMD + Huber, € =0.081

!
i

i

0.0804

0.0784

I
5" (15 — Lo)+0(e — Ly)*

-
x

7
\
\ .
A
\.
‘.
*

L— L= A
damping to engure convergence

constraint

gradient ascent

0.50

o Learn more later today!

force /
Ly=¢
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0.75 1.00 1.25 150 1.75 2.00 2.25
MMD(Refined, FullSim) / MMD(FastSim, FullSim)

 First known usage in HEP: balance per-event and ensemble
losses for ML-based refinement of classical FastSim

o Minimize per-event: bad ensemble value
o Minimize ensemble: per-event still good!

» Find Pareto front (concave or convex) and pick tradeoff

15

2.50


https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/
https://github.com/crowsonkb/mdmm
https://arxiv.org/abs/2309.12919

Do mai N Ad apta’[l on arXiv:2302.02005

No Domain Adaptaion

Norm. Count

 Various techniques: adversarial training, gradient reversal, MMD, DisCo, etc. e
o Frequently explored in methods papers; occasionally by experiments
« Recent results in astrophysics:
(simulations less reliable, many data sources to compare)
o0 DA (using MMD) increases robustness against adversarial attacks - el
'-; o2
o DA using semi-supervised contrastive learning (adaptive clustering + entropy L
separation) has multiple benefits: Wt Cloenain Scapision
007 e (e, e = Alignment of source and target e, TR
006 —— Mean (Domain. adapt) classes: better performance (on both!), | oo .
" T Mo b iy | physically meaningful latent space R P TN
BN Regular Training . o 2,40 842 * :“ P oo 2
004 Domain Adaptation = Anomaly detection capabilities: =y
003 JS =064 known & unknown classes separated
0.02 s teg B0 Ces g0gve
I ) 2112.14299 S
0.00 — Source: Target:
0 20 40 60 80 ) )
Y10 - 1P Distance £ Round smooth ». Round Smooth

Lens
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https://arxiv.org/abs/2302.02005
https://arxiv.org/abs/2112.14299

* From last year: semi-supervised
information bottleneck to learn

optimal mass variables (beats M+,

in semivisible final state)

» How to scale up to higher
dimensions, tougher questions?

107

10°

10!

events [138 fb~1]

1071

SIWB
I
o o
(=] N

=
<
N [¥]

S/VB ratio (V/*)
o

1034

QCD
[ 1 mge=>500GeV
1 me=1000GeV
1 me =2000GeV

0

500 1000

1500 2000 2500 3000

mass [calibrated]
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Interpretability

 Sparsity-inducing categorical
prior can learn optimal latent
dimension, improve both
performance and robustness

Latent Dimensionality of MNIST digits

0
1
2
3
4
5
6
7
8
9

400 425 450 475 500 525 550 575  60.0
Dimensionality

arXiv:2203.02592

o Still a long way from learning what
the machine is learning...

» But new techniques are bringing us
closer than ever before!

Kevin Pedro

* New approach to decompose
superposition/polysemanticity
In LLM neurons: finds
consistent features between
different networks

Feature Activations (A/1/3450 vs B/1/1334)

Correlation between A and B: 0.91

Anthropic

8.0

7.0

6.0

o
o

%
=}

w
=]

=
o

Feature Activaitons (Run A)
N
o

Oiy

Most » 8 “

probability o
mass is at 0 1.0 2.0 3.0 4.0 5.0 6.0

zero. Feature Activations (Run B)

7.0 8.0 9.0
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https://arxiv.org/abs/2303.16253
https://arxiv.org/abs/2203.02592
https://transformer-circuits.pub/2023/monosemantic-features/index.html

Uncertainty

arxiv:2105.08742
 Uncertainty quantification: never convinced of its importance :Eiizlri:aeinty e —gg\tfaerzjg::entation
o Classifiers are just functions: propagate input feature 0
uncertainties and call it a day ; °
» But a different story for generative models £ z
o0 LLMs are known to “hallucinate” (really confabulation) =3
o Would we know if our models do the same? 050 o7 100 125 150 175
« Also important for parameter estimation tasks _Uncertaf:i;’:;::;‘”‘”’ ok S
o Mixture Density Networks are useful there e —Adversaral
 Uncertainty reduction, on the other hand: the name of the game 3°
= 6
o0 Uncertainty-aware training handles in-domain and out-of- E
domain data equally well for H — 1t =0
 Looking forward to more discussion throughout the week! 0 T 075 160 1325 150 19s
u

m

(b) Data generated with z = 7.
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https://arxiv.org/abs/2105.08742

Foundation Models

: . arXiv:2202.03772
« Agrowing trend in industry:
Accuracy  AUC Rejsq9 Rejsq0

o LLMs: finetuning or simply tokenizing additional data P-CNN 0930 09803 2014 759+
PFN — 0.9819 2-—1Z i.E 888 +17

= Apply already-learned relationships to new information EDLnet /S 0) 0930 09807 o Thae

. ] . . PCT 0.940 0.9855 39247 1533 + 101
o Image generation: textual inversion, low-rank adaptation LGN 0929 0964 — 435 & 95
rPCN — 09845 364+£9 1642 + 93

- - - LorentzNe ).942 0.9868 498+ 18 2195+ 173

e Back to ParT: not just >2M parameters, but trained on 100M jets pop o0 0oses  4atlc  1omis
. . . ParticleNet-f.L. 0.942 0.9866  487+9 1771 £+ 80

= 2 orders of magnitude higher than previous datasets ParT-Lt. 0944 0.9877 691+15 2766 +130

» Fine-tuned version performs better on those previous datasets than fully retrained version!
» Learns generalized physics that can apply to many datasets
» Maybe the first glimmer of foundation models for physics
o Build on techniques mentioned here (and others) to improve generalization and physics learning

o Diffusion models could be foundation for generative tasks...
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https://minimaxir.com/2022/09/stable-diffusion-ugly-sonic/
https://arxiv.org/abs/2202.03772

Conclusion

* ML has impacts throughout particle physics

o Every subfield: collider, neutrino, astro, accelerator, computing, and beyond

o Every step: simulation, digitization, triggering, reconstruction, analysis, and more
* The field is maturing:

o Converging on the “right ways” to perform (at least some) tasks

o Deploying ML algorithms at larger scales and for more types of problems

o Building a new toolkit—including mixture density networks, mdmm, contrastive learning, and
more—to make our ML more reliable and more physically meaningful

* Interpretability and uncertainty are two big outstanding (and related) questions

o0 Hopefully the new toolkit helps us make more progress g“

» Foundation models will help achieve our ultimate goal: for everyone to do the best physics
» The future is bright!

ML4Jets 2023 Kevin Pedro ' 20
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Simulation Landscape

“FullSim”

e Common software framework
(i.e. Geant4)

O Experiments can provide
additional code via user actions

« Explicit modeling of detector
geometry, materials, interactions
w/ particles

MLA4Jets 2023

“FastSim”

» Usually experiment-specific
framework

* Implement approximations:

analytical shower shapes (e.qg.
GFLASH), truth-assisted track

reconstruction, etc.

0.15

0.05

E-VdE(®t)/dt [XiY

SF5 40 GeV
GEANT

o mean

C)
gy Param.
mean

0.0 .ﬂ‘ 1 1 1 1

0.0 10.0 20.0 30.0

t [Xo]
arXiv:hep-ex/0001020

Kevin Pedro

- --mean + RMS

% ... mean + RMS

M. Selvaqgai

Delphes
 Ultra-fast parametric simulation

 Used for phenomenological
studies, future projections, etc.

Simulation 1s
crucial in HEP!
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https://arxiv.org/abs/hep-ex/0001020
https://indico.cern.ch/event/397113/contributions/1837819/

ML4Sim Landscape

Options to use ML for sim:

§ - Geant4 --------= >
1. Replace or augment (part or all of) Geant4 = \\
: S N A
2. Replace or augment (part or all of) FastSim < . ! N
AN I I
Goals: 4« FastSim i
: . (ML?) I
1. Increase speed while preserving accuracy ;
. : )
2. Preserve speed while increasing accuracy « Delphes
ML can also create faster, but less accurate simulation
arXiv:2203.08806 Speed

o a la existing classical FastSim
= then augment w/ more ML to improve accuracy
Another option: replace entire chain (“end-to-end”)

0 Exciting prospect, potentially complements other cases

ML4Jets 2023 Kevin Pedro
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https://arxiv.org/abs/2203.08806

Taxonomy

» Generative models (“replace”): » Refinement techniques (“augment”):
o Usually stochastic o Usually deterministic
0 Generative Adversarial Networks (GANS) o Classification-based (reweighting)
o Variational Autoencoders (VAES) 0 Regression-based (correcting)

201 —— Nominal (0.1 mm)

—— Modified (10 mm)
1 === Reweighted

o Normalizing Flows (NFs)

, A - N

/’f \‘\ » Generator 4{ / \ ]
\ / \ J / f Vo
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-
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https://arxiv.org/abs/2203.08806

Metrics

« Speed only matters if needed accuracy is achieved o Fréchet distance: W, distance between

o0 Wrong answers can be obtained infinitely fast
» Looking at 1D histograms: not good enough!

Gaussian fits to (high-D) feature space
= Features can be hand-engineered or obtained

from NN activations

o Can miss high-dimensional correlations

» Another interesting category: classifier scores

» Best category: integral probability metrics

Df(preahpgen) — Sup |Exwprea1f(x) - Eywpgen f(Y)‘

feF

o Wasserstein distance W,: F is set of all K-

Lipschitz functions

= Only works well in 1D, biased in high-D
o Maximum mean discrepancy (MMD): Fis unit

o Train NN to distinguish real vs. generated

o AUC score ranges from 0.5t0 1.0

» Fréchet Particle Distance most clearly

distinguishes between two similar approaches

(message passing GAN and generative adversarial
particle transformer)

ball in reproducing kernel Hilbert space

» Depends on choice of kernel

MLA4Jets 2023

FPD x103 KPD x10° wM x10?
Truth 0.08 £ 0.03 —0.006 4 0.005 0.28 4+ 0.05
MPGAN| 0.30+0.06 —0.001+0.004 0.54+0.06
arXiv:2211.10295 GAPT 0.66 & 0.09 0.001 £ 0.005 0.56 4 0.08

Kevin Pedro
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https://arxiv.org/abs/2211.10295
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