
Modern Machine Learning for the  
LHC Simulation Chain

ML4Jets — Hamburg 2023
Ramon Winterhalder — UCLouvain

ℒ = −
1
4

FμνFμν

+iψ̄γμDμψ

+ψ̄ i
LyijΦψ j

R + h.c.

+ ∣DμΦ∣2 + V(Φ) + BSM



Why do we talk about simulations?



3We will have a lot more data soon
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CMS Collaboration [arXiv:1207.7235, Phys.Lett.B] 

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm
https://arxiv.org/abs/1207.7235
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➡  We want to understand all aspects of data based on first principles!

• We will have 20-25x more data

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm
https://arxiv.org/abs/1207.7235
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2. Optimized analyses for high-dimensional data
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Amplitudes: avoid expensive matrix element
• As “simple” regression task

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] 

ML for forward simulations
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dσ ∼ pdf × ∣M(x) ∣2 × phase space
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Amplitudes: avoid expensive matrix element
• As “simple” regression task

• With uncertainties/boosting using Bayesian NN

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] 

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors
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Badger, Butter, Luchman, Pitz, Plehn [2206.14831]

dσ ∼ pdf × ∣M(x) ∣2 × phase space
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Amplitudes: avoid expensive matrix element
• As “simple” regression task

• With uncertainties/boosting using Bayesian NN

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] 

• Using factorisation ansatz to reach ‰ level accuracy

Maître, Truong [2302.04005]
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dσ ∼ pdf × ∣M(x) ∣2 × phase space

Amplitudes: avoid expensive matrix element
• As “simple” regression task

• With uncertainties/boosting using Bayesian NN

• RL and/or Transformer for simplifications 
of Polylogarithms

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] 

• Using factorisation ansatz to reach ‰ level accuracy

Dersey, Schwartz, Zhang [2206.04115]

ML for forward simulations
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dσ ∼ pdf × ∣M(x) ∣2 × phase space

Amplitudes: avoid expensive matrix element
• As “simple” regression task

• With uncertainties/boosting using Bayesian NN

• RL and/or Transformer for simplifications 
of Polylogarithms

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] 

• Using factorisation ansatz to reach ‰ level accuracy

Dersey, Schwartz, Zhang [2206.04115]

• NN-assisted contour deformation (Loop integrals)

ML for forward simulations
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ML for loop integrals
NNContour

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [2112.09145] 

https://arxiv.org/abs/22112.09145
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Figure 1: Feynman diagrams for our four example integrals, which we call pentagon1L,
ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines denote massive
lines, green lines denote massive or o↵-shell external legs (with a mass di↵erent from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.

5

Contains singularities
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Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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Figure 1: Feynman diagrams for our four example integrals, which we call pentagon1L,
ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines denote massive
lines, green lines denote massive or o↵-shell external legs (with a mass di↵erent from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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RW, Magerya, Villa, Jones,  
Kerner, Butter, Heinrich, Plehn [2112.09145]

Contains singularities

Optimal parametrization = small variance

1

∫
0

N

∏
j=1

dxj I( ⃗x) = ∫γ

N

∏
j=1

dzj I( ⃗z)

Cauchy-Theorem        Contour deformation

Parametrize with NF + NN

factor 30

https://arxiv.org/abs/2112.09145
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Phase space: increase unweighting efficiency

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Flat sampling: 
inefficient

I = ⟨ f(x)⟩x∼unif

Importance sampling: 
find  close to g f

I = ⟨ f(x)
g(x) ⟩

x∼g(x)

dσ ∼ pdf × ∣M(x) ∣2 × phase space



12

• Standard VEGAS approach → fast but no correlations ⊕ Computationally cheap


⊖ High-dim and rich peaking functions 
→ slow convergence


⊖ Peaks not aligned with grid axes 
→ phantom peaks

[G. P. Lepage, 1978]

ML for forward simulations

ℒ
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Phase space: increase unweighting efficiency

dσ ∼ pdf × ∣M(x) ∣2 × phase space

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 
2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562, 
2309.12369, 2311.01548…..] 
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• Standard VEGAS approach → fast but no correlations

• Improve with NN → correlations but unstable

• Use normalizing flows → correlations and stable

ML for forward simulations
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Multi-channel: 
one map for each channel

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

  Kleiss, Pittau [hep-ph/9405257], Maltoni, Stelzer [hep-ph/0208156]  
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• Standard VEGAS approach → fast but no correlations

• Improve with NN → correlations but unstable

• Multi-channel approach → split the integral
• Use normalizing flows → correlations and stable

• Combine all (VEGAS, learned , NF, symmetries,..) 
→ MadNIS framework

αi

ML for forward simulations

ℒ
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Forward

Phase space: increase unweighting efficiency

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 
2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562, 
2309.12369, 2311.01548…..] 

dσ ∼ pdf × ∣M(x) ∣2 × phase space



Neural Importance Sampling
MadNIS

Heimel, RW, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [2212.06172] 
Heimel, Huetsch, Maltoni, Mattelaer, Plehn, RW [2311.01548] 

https://arxiv.org/abs/2212.06172
https://arxiv.org/abs/2311.01548
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Heimel, Huetsch, Maltoni, Mattelear, Plehn, RW [2311.01548]

Flat sampling Importance Sampling Multi-channel

I = ∑
i ⟨αi(x)

f(x)
gi(x) ⟩

x∼gi(x)

Parametrize with NFParametrize with NN
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https://arxiv.org/abs/2311.01548
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Heimel, Huetsch, Maltoni, Mattelear, Plehn, RW [2311.01548]
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Details in talk by Theo Heimel

https://arxiv.org/abs/2311.01548
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Forward

ML for forward simulations

End-to-end generation



Butter, Heimel, Hummerich, Krebs, 
 Plehn, Rousselot, Vent [2110.13632]
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[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…] 

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

Precision generation
• First attempts based on GANs and VAEs

• Improved speed and efficiency with Flows

End-to-end generators learn multiple steps at once
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2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…] 
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• High precision with Diffusion 
and Transformer models

Precision generation
• First attempts based on GANs and VAEs

• Improved speed and efficiency with Flows
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Butter, Huetsch, Schweitzer, 
Plehn, Sorrenson, Spinner [2110.11377]End-to-end generators learn multiple steps at once
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• Bayesian NN and classifiers for full control

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…] 

ML for forward simulations

ℒ
Theory Shower EventsHard process Hadronization Detectors

Forward

End-to-end generators learn multiple steps at once

• High precision with Diffusion 
and Transformer models

Precision generation
• First attempts based on GANs and VAEs

• Improved speed and efficiency with Flows
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Inverse
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21ML for inverse simulations

Inverse

Matrix Element Method

Historically → Tevatron 
Top mass: D0 (98’, 04’), CDF 06’, Fiedler et al. [1003.1316] 
Single-top: Review [1710.10699]



Matrix Element Method
MEM-ML

Butter, Heimel, Martini, Peitzsch, Plehn [2210.00019] 
Heimel, Huetsch, RW, Plehn, Butter [2310.07752] 

https://arxiv.org/abs/2210.00019
https://arxiv.org/abs/2310.07752
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Known from 
theory 

p(xhard ∣α) =
1

σ(α)
dσ(α)
dxhard

Likelihood from differential cross section

Matrix Element Method (MEM)

⊕ based on first principles

⊕ estimates uncertainties reliably

⊕ optimal use of information

→ perfect for processes with few events ☺︎

Matrix Element Method — Theory

Theory 
parameter 

α

ℒ
Theory EventsHard process

Hard-scattering 
momenta 

xhard

Classical analysis

⊖ hand-crafted observables

⊖ binned data

→ not all information is used ☹︎
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Known from 
theory 

Matrix Element Method — Reality

ℒ
Theory Shower EventsHard process Hadronization Detectors

Likelihood intractable 
→ parametrize with NF 

p(xreco ∣α) = ∫ dxhard p(xhard ∣α) p(xreco ∣xhard) ϵ(xhard)MEM master formula:

parametrize with NN

Theory 
parameter 

α

Reconstructed 
momenta 

xreco
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Known from 
theory 

Matrix Element Method — Reality

ℒ
Theory Shower EventsHard process Hadronization Detectors

Likelihood intractable 
→ parametrize with NF 

p(xreco ∣α) = ∫ dxhard p(xhard ∣α) p(xreco ∣xhard) ϵ(xhard)MEM master formula:

parametrize with NN

Details in talk by Nathan Huetsch

Theory 
parameter 

α

Reconstructed 
momenta 

xreco
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• We find both proof-of-concepts as well as 
established use cases (→ MadNIS)

Take-home message

Summary and Outlook

• ML beneficial in every step in the simulation chain

• Interesting interplay between HEP and ML
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• We find both proof-of-concepts as well as 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Take-home message

Summary and Outlook

• ML beneficial in every step in the simulation chain

• Interesting interplay between HEP and ML
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    → HEP simulations provide ~infinite data for ML
  → HEP requirements (precision, symmertries,…) 
       different than industry applications

Future tasks

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

• Further foster collaboration between  
theory, experiment, and ML community

https://arxiv.org/abs/2203.00057
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• We find both proof-of-concepts as well as 
established use cases (e.g. importance sampling)

Take-home message

Summary and Outlook

• ML beneficial in every step in the simulation chain

• Interesting interplay between HEP and ML

ℒ
Theory Shower EventsHard process Hadronization Detectors

    → HEP simulations provide ~infinite data for ML
  → HEP requirements (precision, symmertries,…) 
       different than industry applications • More details in our Snowmass report

• Make everything run on the GPU and 
differentiable (MadJax - Heinrich et al. [2203.00057])

• Further foster collaboration between  
theory, experiment, and ML community

• Full integration of ML-based simulations into 
standard tools → MadGraph,….

Future tasks

https://arxiv.org/abs/2203.00057

