Modern Machine Learning for the LHC Simulation Chain

$$\begin{split} \mathscr{L} &= -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} \\ &+ \mathrm{i} \bar{\psi} \gamma^{\mu} D_{\mu} \psi \\ &+ \bar{\psi}_{L}^{i} y_{ij} \Phi \psi_{R}^{j} + \mathrm{h.c.} \\ &+ |D_{\mu} \Phi|^{2} + V(\Phi) + \mathrm{BSM} \end{split}$$

UCLouvain

ML4Jets – Hamburg 2023 Ramon Winterhalder – UCLouvain

Why do we talk about simulations?

We will have a lot more data soon

CMS Collaboration [arXiv:1207.7235, Phys.Lett.B]

2012

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

We will have a lot more data soon

CMS Collaboration [arXiv:1207.7235, Phys.Lett.B]

2012

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

We will have a lot more data soon

CMS Collaboration [arXiv:1207.7235, Phys.Lett.B]

https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm

Understanding LHC data based on 1^{st} principles

- 1. Precision simulations (a lot)

Understanding LHC data based on 1st principles

1. Precision simulations (a lot)

2. Optimized analyses for high-dimensional data

Machine Learning has significant impact on all aspects

Understanding LHC data based on 1^{st} principles

Machine Learning has significant impact on all aspects

Amplitudes: avoid expensive matrix element

• As "simple" regression task

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,....]

Amplitudes: avoid expensive matrix element

- As "simple" regression task
- With uncertainties/boosting using **Bayesian NN** \bullet

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,....]

X

Amplitudes: avoid expensive matrix element

- As "simple" regression task
- With uncertainties/boosting using **Bayesian NN** \bullet
- Using factorisation ansatz to reach **%** level accuracy \bullet

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,....]

Amplitudes: avoid expensive matrix element

- As "simple" regression task
- With uncertainties/boosting using Bayesian NN
- Using factorisation ansatz to reach **%** level accuracy
- **RL and/or Transformer** for simplifications of Polylogarithms

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,....]

Amplitudes: avoid expensive matrix element

- As "simple" regression task
- With uncertainties/boosting using **Bayesian NN**
- Using factorisation ansatz to reach *level* accuracy
- **RL and/or Transformer** for simplifications of Polylogarithms
- NN-assisted contour deformation (Loop integrals)

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,....]

Dersey, Schwartz, Zhang [2206.04115]

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [2112.09145]

Cauchy-Theorem → Contour deformation

$$\int_{0}^{1} \prod_{j=1}^{N} dx_{j} I(\vec{x}) = \int_{\gamma} \prod_{j=1}^{N} dz_{j} I(\vec{z})$$

Cauchy-Theorem → Contour deformation

Cauchy-Theorem -> Contour deformation

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [2112.09145]

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [2112.09145]

Phase space: increase unweighting efficiency

Standard VEGAS approach → fast but no correlations

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562, 2309.12369, 2311.01548.....]

Phase space: increase unweighting efficiency

- Standard VEGAS approach → fast but no correlations
- Improve with NN → correlations but unstable ullet

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562, 2309.12369, 2311.01548.....]

$d\sigma \sim pdf$ X

Phase space: increase unweighting e

- Standard VEGAS approach \rightarrow fast but no correlations \bullet
- Improve with NN → correlations but unstable ullet
- Use normalizing flows → correlations and stable

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562, 2309.12369, 2311.01548.....]

$$M(x)|^2 \times$$

Bothmann, Janßen, Knobbe, Schmale, Schumann [2001.05478]

phase space

$d\sigma \sim pdf \times |M(x)|^2 \times$

Phase space: increase unweighting efficiency

- Standard VEGAS approach → fast but no correlations
- Improve with $NN \rightarrow correlations$ but unstable ullet
- Use normalizing flows → correlations and stable
- Multi-channel approach \rightarrow split the integral

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562, 2309.12369, 2311.01548.....]

$d\sigma \sim pdf$ X

Phase space: increase unweighting efficiency

- Standard VEGAS approach → fast but no correlations
- Improve with $NN \rightarrow correlations$ but unstable
- Use normalizing flows → correlations and stable
- Multi-channel approach \rightarrow split the integral \bullet
- Combine all (VEGAS, learned α_i , NF, symmetries,...) \bullet → MadNIS framework

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719, 2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562, 2309.12369, 2311.01548.....]

$$M(x)|^2$$

Neural Importance Sampling

MadNIS

Heimel, Huetsch, Maltoni, Mattelaer, Plehn, RW [2311.01548] Heimel, RW, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [2212.06172]

MadNIS — Neural importance sampling

Flat sampling

Importance Sampling

Multi-channel

Heimel, Huetsch, Maltoni, Mattelear, Plehn, RW [2311.01548]

MadNIS – Neural importance sampling

→ Details in talk by Theo Heimel

Heimel, Huetsch, Maltoni, Mattelear, Plehn, RW [2311.01548]

End-to-end generation

End-to-end generators learn multiple steps at once

Precision generation

- First attempts based on GANs and VAEs
- Improved speed and efficiency with Flows

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836]

Butter, Heimel, Hummerich, Krebs, Plehn, Rousselot, Vent [2110.13632]

End-to-end generators learn multiple steps at once

Precision generation

- First attempts based on **GANs and VAEs** ullet
- Improved speed and efficiency with **Flows**
- High precision with **Diffusion** ulletand **Transformer** models

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836]

End-to-end generators learn multiple steps at once

Precision generation

- First attempts based on **GANs and VAEs** ullet
- Improved speed and efficiency with **Flows**
- High precision with **Diffusion** \bullet and **Transformer** models
- Bayesian NN and classifiers for full control ightarrow

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836]

ML for inverse simulations

ML for inverse simulations

Matrix Element Method

Historically → Tevatron

Top mass: D0 (98', 04'), CDF 06', Fiedler et al. [1003.1316] Single-top: Review [1710.10699]

Matrix Element Method

MEM-ML

Heimel, Huetsch, RW, Plehn, Butter [2310.07752] Butter, Heimel, Martini, Peitzsch, Plehn [2210.00019]

Matrix Element Method – Theory

Classical analysis

- ⊖ hand-crafted observables
- ⊖ binned data
- \rightarrow not all information is used \bigotimes

Matrix Element Method (MEM)

- based on first principles
- estimates uncertainties reliably
- optimal use of information
- \rightarrow perfect for processes with few events \bigcirc

Matrix Element Method – Reality

MEM master formula:

$$p(x_{\rm reco} | \alpha) = dx_{\rm ha}$$

Likelihood intractable \rightarrow parametrize with NF Reconstructed momenta

 $x_{\rm reco}$

parametrize with NN

 $rac{}_{ard} p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard}) \leftarrow$

Matrix Element Method – Reality

MEM master formula:

$$p(x_{\rm reco} | \alpha) = \int dx_{\rm ha}$$

Likelihood intractable \rightarrow parametrize with NF Reconstructed momenta

 $x_{\rm reco}$

parametrize with NN

 $+ \frac{p(x_{hard} | \alpha) p(x_{reco} | x_{hard}) \epsilon(x_{hard})}{\epsilon(x_{hard})} \leftarrow$

Details in talk by Nathan Huetsch

- ML beneficial in every step in the simulation chain \bullet
- We find both proof-of-concepts as well as ulletestablished use cases (\rightarrow MadNIS)
- Interesting interplay between HEP and ML ullet

Summary and Outlook

Hadronization Detectors **Events**

- ML beneficial in every step in the simulation chain \bullet
- We find both proof-of-concepts as well as \bullet established use cases (\rightarrow MadNIS)
- Interesting interplay between HEP and ML ightarrow
 - \rightarrow HEP simulations provide ~infinite data for ML

Summary and Outlook

Hadronization Detectors **Events**

- ML beneficial in every step in the simulation chain ullet
- We find both proof-of-concepts as well as ulletestablished use cases (\rightarrow MadNIS)
- Interesting interplay between HEP and ML ightarrow
 - \rightarrow HEP simulations provide ~infinite data for ML
 - \rightarrow HEP requirements (precision, symmetries,...) different than industry applications

Summary and Outlook

Hadronization Detectors **Events**

- ML beneficial in every step in the simulation chain • Full integration of ML-based simulations into \bullet standard tools \rightarrow MadGraph....
- We find both proof-of-concepts as well as ulletestablished use cases (-> MadNIS)
- Interesting interplay between HEP and ML ightarrow
 - \rightarrow HEP simulations provide ~infinite data for ML
 - \rightarrow HEP requirements (precision, symmetries,...) **different** than industry applications

Summary and Outlook

Future tasks

- Make everything run on the GPU and ulletdifferentiable (MadJax - Heinrich et al. [2203.00057])
- Further foster collaboration between ightarrowtheory, experiment, and ML community

Sci Post

SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Anja Butter^{1,2}, Tilman Plehn¹, Steffen Schumann³, Simon Badger⁴, Sascha Caron^{5,6} Kyle Cranmer^{7,8}, Francesco Armando Di Bello⁹, Etienne Dreyer¹⁰, Stefano Forte¹¹, Sanmay Ganguly¹², Dorival Gonçalves¹³, Eilam Gross¹⁰, Theo Heimel¹, Gudrun Heinrich¹⁴, Lukas Heinrich¹⁵, Alexander Held¹⁶, Stefan Höche¹⁷, Jessica N. Howard¹⁸, Philip Ilten¹⁹, Joshua Isaacson¹⁷, Timo Janßen³, Stephen Jones²⁰, Marumi Kado^{9,21}, Michael Kagan²², Gregor Kasieczka²³, Felix Kling²⁴, Sabine Kraml²⁵, Claudius Krause²⁶, Frank Krauss²⁰, Kevin Kröninger²⁷, Rahool Kumar Barman¹³, Michel Luchmann¹, Vitaly Magerya¹⁴, Daniel Maitre²⁰, Bogdan Malaescu², Fabio Maltoni^{28,29}, Till Martini³⁰, Olivier Mattelaer²⁸, Benjamin Nachman^{31,32}, Sebastian Pitz¹, Juan Rojo^{6,33}, Matthew Schwartz³⁴, David Shih²⁵, Frank Siegert³⁵, Roy Stegeman¹¹, Bob Stienen⁵, Jesse Thaler³⁶, Rob Verheyen³⁷, Daniel Whiteson¹⁸, Ramon Winterhalder²⁸, and Jure Zupan¹⁹

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

collision data, and enhance inference as an inverse simulation problem. will improve the speed and precision of forward simulations, handle the complexity of New ideas and tools developed at the interface of particle physics and machine learning

Summary and Outlook

Future tasks

- **Full integration** of ML-based simulations into ulletstandard tools → MadGraph,....
- Make everything run on the GPU and • differentiable (MadJax - Heinrich et al. [2203.00057])
- Further foster collaboration between ightarrowtheory, experiment, and ML community
- More details in our **Snowmass report**

