Modern Machine Learning for the LHC Simulation Chain

 $\mathcal{L} = -\frac{1}{4}$ 4 *Fμν Fμν* $+i\bar{\psi}\gamma^{\mu}D_{\mu}\psi$ $+\bar{\psi}^i_L y_{ij}$ $\Phi \psi^j_{\scriptscriptstyle{K}}$ $\frac{J}{R}$ + h.c. $+|D_{\mu}\Phi|^{2}+V(\Phi)+\text{BSM}$

LUCLouvain

ML4Jets — Hamburg 2023 Ramon Winterhalder — UCLouvain

Why do we talk about simulations?

We will have a ³ lot more data soon

<https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm>

2012

[CMS Collaboration \[arXiv:1207.7235, Phys.Lett.B\]](https://arxiv.org/abs/1207.7235)

We will have a ³ lot more data soon

<https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm>

2012

[CMS Collaboration \[arXiv:1207.7235, Phys.Lett.B\]](https://arxiv.org/abs/1207.7235)

We will have a ³ lot more data soon

<https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm>

[CMS Collaboration \[arXiv:1207.7235, Phys.Lett.B\]](https://arxiv.org/abs/1207.7235)

Understanding LHC data based on 1^st **principles**

1. Precision simulations (a lot)

2. Optimized analyses for high-dimensional data

Machine Learning has significant impact on all aspects

Understanding LHC data based on 1^st **principles**

1. Precision simulations (a lot)

2. Optimized analyses for high-dimensional data

Understanding LHC data based on 1^st **principles**

Machine Learning has significant impact on all aspects

• As "simple" **regression** task

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..]

\times phase space

- As "simple" **regression** task
- With uncertainties/boosting using **Bayesian NN**

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..]

- As "simple" **regression** task
- With uncertainties/boosting using **Bayesian NN** 60%
- Using factorisation ansatz to reach % level accuracy

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 6% 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..] Percentage of points

^e⁺*e*° ! *qqggg* ¯ Antenna

- As "simple" **regression** task
- With uncertainties/boosting using **Bayesian NN**
- Using factorisation ansatz to reach **‰ level** accuracy
- **RL and/or Transformer** for simplifications of Polylogarithms

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..]

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, 2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901, 2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,…..]

- As "simple" **regression** task
- With uncertainties/boosting using **Bayesian NN**
- Using factorisation ansatz to reach **‰ level** accuracy
- **RL and/or Transformer** for simplifications of Polylogarithms
- NN-assisted **contour deformation** (Loop integrals)

Dersey, Schwartz, Zhang [2206.04115]

ML for loop integrals NNContour

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [\[2112.09145\]](https://arxiv.org/abs/22112.09145)

NNContour - ML for loop integrals

m

m

m

m m

m

Example diagrams diagrams of the state of the Cauchy-Theorem \rightarrow Contour deformation

$$
\left[\prod_{j=1}^1 dx_j I(\vec{x}) = \int_{\gamma} \prod_{j=1}^N dz_j I(\vec{z})\right]
$$

NNContour - ML for loop integrals

Cauchy-Theorem \rightarrow **Contour deformation**

m

m

m

m m

m

Example diagrams diagrams of the state of the Cauchy-Theorem \rightarrow Contour deformation

the corresponding integral is described by 4 independent Feynman parameters. The corresponding few independent F

m

m

m

m m

m

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [\[2112.09145](https://arxiv.org/abs/2112.09145)]

m

m

m

m m

m

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [\[2112.09145](https://arxiv.org/abs/2112.09145)]

Phase space: increase unweighting efficiency

Phase space: increase unweighting efficiency

- Standard **VEGAS** approach → **fast** but **no correlations**
- Improve with **NN** → **correlations** but **unstable**

Phase space: increase unweighting efficiency

Bothmann, Janßen, Knobbe, Schmale, Schumann [2001.05478]

 \times | phase space

- Standard **VEGAS** approach → **fast** but **no correlations**
- Improve with **NN** → **correlations** but **unstable**
- Use **normalizing flows** → **correlations** and **stable**

ML for forward simulations

$d\sigma \sim pdf \times$

Phase space: increase unweighting e

$$
M(x) \hspace{.5pt} |^2
$$

- Standard **VEGAS** approach → **fast** but **no correlations**
- Improve with **NN** → **correlations** but **unstable**
- Use **normalizing flows** → **correlations** and **stable**
- **Multi-channel** approach → split the integral

$d\sigma \sim pdf$ × $|M(x)|^2$ ×

Phase space: increase unweighting efficiency

- Standard **VEGAS** approach → **fast** but **no correlations**
- Improve with **NN** → **correlations** but **unstable**
- Use **normalizing flows** → **correlations** and **stable**
- **Multi-channel** approach → split the integral
- Combine all (VEGAS, learned α_i , NF, symmetries,..) → **MadNIS** framework

$d\sigma \sim pdf \times$

Phase space: increase unweighting e

$$
M(x) \, |^2
$$

Neural Importance Sampling

MadNIS

Heimel, RW, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn [\[2212.06172\]](https://arxiv.org/abs/2212.06172) Heimel, Huetsch, Maltoni, Mattelaer, Plehn, RW [\[2311.01548\]](https://arxiv.org/abs/2311.01548)

MadNIS — Neural ¹⁶ importance sampling

Heimel, Huetsch, Maltoni, Mattelear, Plehn, RW [\[2311.01548](https://arxiv.org/abs/2311.01548)]

MadNIS — Neural ¹⁶ importance sampling

Parametrize with **NN** \longrightarrow Parametrize with **NF**

Details in talk by **Theo Heimel**

End-to-end generation

Butter, Heimel, Hummerich, Krebs, Plehn, Rousselot, Vent [2110.13632]

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…]

ML for forward simulations

Precision generation

- First attempts based on **GANs and VAEs**
- Improved speed and efficiency with **Flows**

End-to-end generators learn multiple steps at once

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…]

ML for forward simulations

Butter, Huetsch, Schweitzer, End-to-end generators learn multiple steps at once
Plehn, Sorrenson, Spinner [2110.11377]

Precision generation

- First attempts based on **GANs and VAEs**
- Improved speed and efficiency with **Flows**
- High precision with **Diffusion** and **Transformer** models

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02748, 2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630, 2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 ..…]

ML for forward simulations

- First attempts based on **GANs and VAEs**
- Improved speed and efficiency with **Flows**
- High precision with **Diffusion** and **Transformer** models
- **Bayesian NN** and **classifiers** for full control

End-to-end generators learn multiple steps at once

Precision generation

ML for inverse simulations

ML for inverse simulations

Matrix Element Method

Historically - Tevatron

Top mass: D0 (98', 04'), CDF 06', Fiedler et al. [1003.1316]
Single-top: Review [1710.10699]

Matrix Element Method

MEM-ML

Butter, Heimel, Martini, Peitzsch, Plehn [\[2210.00019\]](https://arxiv.org/abs/2210.00019) Heimel, Huetsch, RW, Plehn, Butter [\[2310.07752\]](https://arxiv.org/abs/2310.07752)

- ⊕ based on first principles
- ⊕ estimates uncertainties reliably
- ⊕ optimal use of information
- \rightarrow perfect for processes with few events \odot

Matrix Element Method (MEM)

- ⊖ hand-crafted observables
- ⊖ binned data
- \rightarrow not all information is used \odot

Matrix Element Method — Theory

Classical analysis

Matrix Element Method — Reality

Likelihood intractable **→** parametrize with **NF**

$$
p(x_{\text{reco}} | \alpha) = \left| dx_{\text{ha}} \right|
$$

parametrize with **NN**

*p(x_{reco} |<i>a***) = | d***x***_{hard}** $p(x_{\text{hard}} | a) p(x_{\text{lead}} | x_{\text{hard}}) e(x_{\text{hard}})$ **+**

Reconstructed momenta

 x _{reco}

Matrix Element Method — Reality

Likelihood intractable **→** parametrize with **NF** **Reconstructed** momenta

 x _{reco}

$$
p(x_{\text{reco}} | \alpha) = \int dx_{\text{hz}}
$$

 $→$ **Details in talk by Nathan Huetsch**

parametrize with **NN**

MEM master formula: $p(x_{\text{reco}} | \alpha) = | dx_{\text{hard}} p(x_{\text{hard}} | \alpha) p(x_{\text{reco}} | x_{\text{hard}}) e(x_{\text{hard}})$

Summary and Outlook

Theory National Hard process Shower Hadronization Business Detectors Business Shower Business Detectors Business

- ML beneficial in **every step** in the simulation chain
- We find both **proof-of-concepts** as well as established use cases **(→ MadNIS)**
- Interesting **interplay** between **HEP** and **ML**

Summary and Outlook

Theory National Hard process Shower Hadronization Business Detectors Business Shower Business Detectors Business

- ML beneficial in **every step** in the simulation chain
- We find both **proof-of-concepts** as well as established use cases **(→ MadNIS)**
- Interesting **interplay** between **HEP** and **ML**
	- → HEP simulations provide **~infinite data** for ML

- ML beneficial in **every step** in the simulation chain
- We find both **proof-of-concepts** as well as established use cases **(→ MadNIS)**
- Interesting **interplay** between **HEP** and **ML**
	- → HEP simulations provide **~infinite data** for ML
	- → HEP requirements (**precision, symmertries,…**) **different** than industry applications

Summary and Outlook

Theory National Hard process Shower Hadronization Business Detectors Business Shower Business Detectors Business

- ML beneficial in **every step** in the simulation chain • **Full integration** of ML-based simulations into standard tools **→ MadGraph,….**
- We find both **proof-of-concepts** as well as established use cases **(→ MadNIS)**
- Interesting **interplay** between **HEP** and **ML**
	- → HEP simulations provide **~infinite data** for ML
	- → HEP requirements (**precision, symmertries,…**) **different** than industry applications

Summary and Outlook

Future tasks

- Make everything run on the **GPU and differentiable** (MadJax - Heinrich et al. [[2203.00057\]](https://arxiv.org/abs/2203.00057))
- Further foster collaboration between **theory, experiment,** and **ML** community

Sci Post

SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Anja Butter^{1,2}, Tilman Plehn¹, Steffen Schumann³, Simon Badger⁴, Sascha Caron^{5,6} Kyle Cranmer^{7,8}, Francesco Armando Di Bello⁹, Etienne Dreyer¹⁰, Stefano Forte¹¹,
Sanmay Ganguly¹², Dorival Gonçalves¹³, Eilam Gross¹⁰, Theo Heimel¹,
Gudrun Heinrich¹⁴, Lukas Heinrich¹⁵, Alexander Held¹ Jessica N. Howard¹⁸, Philip Ilten¹⁹, Joshua Isaacson¹⁷, Timo Janßen³, Stephen Jones²⁰, Marumi Kado^{9,21}, Michael Kagan²², Gregor Kasieczka²³, Felix Kling²⁴, Sabine Kraml²⁵, Claudius Krause²⁶, Frank Krauss²⁰, Kevin Kröninger²⁷, Rahool Kumar Barman¹³, Michel Luchmann¹, Vitaly Magerya¹⁴, Daniel Maitre²⁰, Bogdan Malaescu², Fabio Maltoni^{28,29}, Till Martini³⁰, Olivier Mattelaer²⁸, Benjamin Nachman^{31,32}, Sebastian Pitz¹, Juan Rojo^{6,33}, Matthew Schwartz³⁴, David Shih²⁵, Frank Siegert³⁵, Roy Stegeman¹¹, Bob Stienen⁵, Jesse Thaler³⁶, Rob Verheyen³⁷, Daniel Whiteson¹⁸, Ramon Winterhalder²⁸, and Jure Zupan¹⁹

Summary and Outlook

→ HEP simulations provide **~infinite data** for ML

First-principle simulations are at the heart of the high-energy physics research prodetails and interpretations are at the heart of the high-energy physics research pro-
gram. They link the vast data output of multi-purpose detectors with fundamental the-
ory predictions and interpretation. This review il of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

collision data, and enhance inference as an inverse simulation problem. will improve the speed and precision of forward simulations, handle the complexity of ing conceptional developments driven by the specific requirements of particle physics.
New ideas and tools developed at the interface of particle physics and machine learning

- **Full integration** of ML-based simulations into standard tools **→ MadGraph,….**
- Make everything run on the **GPU and differentiable** (MadJax - Heinrich et al. [[2203.00057\]](https://arxiv.org/abs/2203.00057))
- Further foster collaboration between **theory, experiment,** and **ML** community
-

Future tasks