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Why do we talk about simulations?



We will have a lot more data soon

CMS Collaboration [arXiv:1207.7235, Phys.Lett.B] https://Ihc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm
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We will have a lot more data soon (3

CMS Collaboration [arXiv:1207.7235, Phys.Lett.B] https://Ihc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm
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e We will have 20-25x more data

= We want to understand all aspects of data based on first principles!


https://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm
https://arxiv.org/abs/1207.7235
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1. Precision simulations (a lot)

2. Optimized analyses for high-dimensional data

Forward

Inverse



o

Understanding LHC data based on 13! principles

What do we need to understand the data?

1. Precision simulations (a lot)

2. Optimized analyses for high-dimensional data

Forward

Inverse

= Machine Learning has significant impact on all aspects



Understanding LHC data based on 13! principles

o

What do we need to understand the data?

1. Precision simulations (a lot) <«———this talk

2. Optimized analyses for high-dimensional data

Forward

Inverse

= Machine Learning has significant impact on all aspects



ML for forward simulations

Forward

Theory Shower Hadronization Detectors




ML for forward simulations @

Forward




ML for forward simulations

Forward

Calculate (differential) cross sections

do ~ pdf X |M(x)|* X d®




ML for forward simulations

Forward

Calculate (differential) cross sections
] y

do ~ pdf x(| M) | x [d®)




ML for forward simulations

Forward

>

do ~ pdf X ||M(x)|?| X phasespace

Amplitudes: avoid expensive matrix element

* As “simple” regression task

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898,
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901,
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,.....]



ML for forward simulations

Forward

>

do ~ pdf X ||M(x)|?| X phasespace

Amplitudes: avoid expensive matrix element Badger, Butter, Luchman, Pitz, Plehn [2206.14831]

* As “simple” regression task 4= VY00 largest 100% A
largest 1% Ann

* With uncertainties/boosting using Bayesian NN largest 0.1% A
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[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898, At + overflow bin
2106.09474, 2107.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901,
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,.....]



ML for forward simulations

Forward

>

do ~ pdf X ||M(x)|?| X phasespace

Amplitudes: avoid expensive matrix element Matre, Truong [2302.04005]

DO
-)
Oi

* As “simple” regression task e o adag = Antenna
1 Naive
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* With uncertainties/boosting using Bayesian NN

* Using factorisation ansatz to reach %o level accuracy

N
+~
5

Qo

@F
(-

o

¥

0 10%
+

-

L

o

~

O
am

o
X

0%
A

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898,
2106.09474, 210/7.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901,
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ML for forward simulations

Forward

>

do ~ pdf X ||M(x)|?| X phasespace

Amplitudes: avoid expensive matrix element Dersey, Schwartz, Zhang [2206.04115]

* As “simple” regression task

Simplified polylogarithmic expression

Liy(z)

* With uncertainties/boosting using Bayesian NN

. . . Transformer
* Using factorisation ansatz to reach %o level accuracy I

Simplified Symbol

 RL and/or Transformer for simplifications gl (1-2)®0
of Polylogarithms

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898,
2106.09474, 210/7.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901,
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,.....]



ML for forward simulations

Forward

>

do ~ pdf X ||M(x)|?| X phasespace

Amplitudes: avoid expensive matrix element Dersey, Schwartz, Zhang [2206.04115]

* As “simple” regression task

Simplified polylogarithmic expression

* With uncertainties/boosting using Bayesian NN () + 2 Lis(c)
* Using factorisation ansatz to reach %o. level accuracy T“mf‘mf

 RL and/or Transformer for simplifications
of Polylogarithms

* NN-assisted contour deformation (Loop integrals)

[1912.11055, 2002.07516, 2006.16273, 2008.10949, 2104.14182, 2105.04898,
2106.09474, 210/7.06625, 2109.11964, 2112.09145, 2201.04523, 2206.08901,
2206.04115, 2206.14831, 2301.13562, 2302.04005, 2306.07726,.....]



NNContour

ML for loop integrals

RW, Magerya, Villa, Jones, Kerner, Butter, Heinrich, Plehn [2112.09145]



https://arxiv.org/abs/22112.09145

NNContour — ML for loop integrals @

dx
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NNContour — ML for loop integrals @

dxxf
FV—LD/Z

J=1

N DR
Goc[
0

Contains singularities

Cauchy-Theorem — Contour deformation

Parametrize with NF + NN

—> Optimal parametrization = small variance



NNContour — ML for loop integrals 10,

RW, Magerya, Villa, Jones,
Kerner, Butter, Heinrich, Plehn [2112.09145]
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NNContour — ML for loop integrals 10,

RW, Magerya, Villa, Jones,
Kerner, Butter, Heinrich, Plehn [2112.09145]
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ML for forward simulations

Forward

>

do ~ pdf x |[M®X[]> X

Phase space: increase unweighting efficiency

Flat sampling:
inefficient




ML for forward simulations

Forward
>

do ~ pdf x |[M®X[]> X

Phase space: increase unweighting efficiency

A

Flat sampling: Importance sampling:
inefficient find g close to f

[ = <f(x)>x~unif = <f(_x)>
8%) / oo




ML for forward simulations

Forward

>

do ~ pdf x |[M®X[]> X

Phase space: increase unweighting efficiency

Standard VEGAS approach — fast but

[G. P. Lepage, 1978]

@ Computationally cheap

High-dim and rich peaking functions

—-)

Peaks not aligned with grid axes

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719,
2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562,
2309.12369, 2311.01548.... ]




ML for forward simulations

Forward

>

do ~ pdf x |[M®X[]> X

Phase space: increase unweighting efficiency

Standard VEGAS approach — fast but

Improve with NN — correlations but -

[G. P. Lepage, 1978]

@ Computationally cheap

High-dim and rich peaking functions

Peaks not aligned with grid axes

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719,
2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562,
2309.12369, 2311.01548.... ]




ML for forward simulations

Forward

>

do ~ pdf x |[M®X[]> X

Phase Space: |ncrease unwelghtlng eﬁ-'ICIenCy Bothmann, JanBen, Knobbe, Schmale, Schumann [2001.05478]

Standard VEGAS approach — fast but

VEGAS
— NN

—_
-
o

| ——  Uniform

Improve with NN — correlations but

Use normalizing flows — correlations and stable
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[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719,
2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562,
2309.12369, 2311.01548.... ]




ML for forward simulations

Forward

>

do ~ pdf x |[M®X[]> X

Phase Space: |ncrease unWelghtlng eﬁICIenCy Kleiss, Pittau [hep-ph/9405257], Maltoni, Stelzer [hep-ph/0208156]

e Standard VEGAS approach — fast but

* |Improve with NN — correlations but
 Use normalizing flows — correlations and stable

* Multi-channel approach — split the integral

Multi-channel:
one map for each channel

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719,
2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562,
2309.12369, 2311.01548.... ]




ML for forward simulations

Forward

>

do ~ pdf x |[M®X[]> X

Phase Space: |ncrease unWelghtlng eﬁICIenCy Kleiss, Pittau [hep-ph/9405257], Maltoni, Stelzer [hep-ph/0208156]

e Standard VEGAS approach — fast but

* |Improve with NN — correlations but
 Use normalizing flows — correlations and stable

* Multi-channel approach — split the integral

» Combine all (VEGAS, learned a;, NF, symmetries,..) Sl

one map for each channel
— MadNIS framework

[1707.00028, 1810.11509, 2001.05478, 2001.05486, 2001.10028, 2005.12719,
2009.07819, 2011.13445, 2109.11964, 2112.09145, 2212.06172, 2301.13562,
2309.12369, 2311.01548.... ]




MadNIS

Neural Importance Sampling

Heimel, Huetsch, Maltoni, Mattelaer, Plehn, RW
Heimel, RW, Butter, Isaacson, Krause, Maltoni, Mattelaer, Plehn

2311.01548

2212.06172



https://arxiv.org/abs/2212.06172
https://arxiv.org/abs/2311.01548

MadNIS — Neural importance sampling

©

Heimel, Huetsch, Maltoni, Mattelear, Plehn, RW [2311.01548]
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MadNIS — Neural importance sampling

©

Heimel, Huetsch, Maltoni, Mattelear, Plehn, RW [2311.01548]
(\ /\ /\ uc — WTW™ds (@13 TeV)
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—» Details in talk by Theo Heimel


https://arxiv.org/abs/2311.01548

ML for forward simulations

Forward

Hard process Shower Hadronization Detectors Events

End-to-end generation



ML for forward simulations

Forward

Shower Hadronization Detectors Events

End-to-end generators learn multiple steps at once Butter, Heimel, Hummerich, Krebs,

Plehn, Rousselot, Vent [2110.13632]

Precision generation 7 + 1 jet exclusive
* First attempts based on GANs and VAEs

—_
=
N\

normalized

* Improved speed and efficiency with Flows

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02/748,
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630,
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 .....]




ML for forward simulations

Forward

Shower Hadronization Detectors Events

Butter, Huetsch, Schweitzer,

End-to-end generators learn multiple steps at once Plehn, Sorrenson. Spinner [2110.11377]

Z+1 jet exclusive

Precision generation

* First attempts based on GANs and VAEs No. — True
— CFM

* Improved speed and efficiency with Flows

* High precision with Diffusion
and Transformer models

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02/748,
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630,
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 .....]

90 95
M,, [GeV]




ML for forward simulations 20,

Forward

Shower Hadronization Detectors Events

End-to-end generators learn multiple steps at once

Nachman, RW [2305.07696]

pp — Wt + 3j (@14 TeV)

Precision generation Truth

—— Baseflow

* First attempts based on GANs and VAEs | — Lasen

* Improved speed and efficiency with Flows

* High precision with Diffusion
and Transformer models

« Bayesian NN and classifiers for full control

[1901.00875, 1901.05282, 1903.02433, 1907.03764, 1912.02/748,
2001.11103, 2011.13445, 2101.08944, 2110.13632, 2211.13630,
2303.05376, 2305.07696, 2305.10475, 2305.16774, 2307.06836 .....]




ML for inverse simulations

Theory Shower Hadronization Detectors

Inverse




ML for inverse simulations

Matrix Element Method

Theory Shower Hadronization Detectors

Inverse

Historically — Tevatron
Top mass: DO (98°, 04°), CDF 06’, Fiedler et al. [1003.1316]
Single-top: Review [1710.10699]



MEM-ML
Matrix Element Method

Heimel, Huetsch, RW, Plehn, Butter
Butter, Heimel, Martini, Peitzsch, Plehn

2310.07752

2210.00019]



https://arxiv.org/abs/2210.00019
https://arxiv.org/abs/2310.07752

Matrix Element Method — Theory @

Hard process
—

Classical analysis

hand-crafted observables
binned data

— not all iInformation Is used

Theory Known from Hard-scattering
parameter theory momenta

o *hard i
Matrix Element Method (MEM)

Likelihood from differential cross section ® based on first principles
@ estimates uncertainties reliably

1 do(a) . . .
P(Xarg| @) = @ optimal use of information

9 (Cl) dXhard

— perfect for processes with few events ©




Matrix Element Method — Reality @

Theory Shower Hadronization
¥ a—

Detectors

Theory Known from Likelihood intractable Reconstructed
parameter theory — parametrize with NF momenta
Qa X

reco

parametrize with NN

MEM master formula: p(xreco ) = Idxhard p(xhard | ) P(xreco |xhard) € (xhard) 4_|



Matrix Element Method — Reality C@j

Theory Shower Hadronization
¥ a—

Detectors

Theory Known from Likelihood intractable Reconstructed
parameter theory — parametrize with NF momenta
Qa X

reco

parametrize with NN

MEM master formula: p(xreco ) = Idxhard p(xhard | ) P(xreco |xhard) € (Xhard) 4_|

—» Details in talk by Nathan Huetsch
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Summary and Outlook

Take-home message Future tasks

* ML beneficial in every step in the simulation chain * Full integration of ML-based simulations into
standard tools =+ MadGraph,....
 We find both proof-of-concepts as well as

established use cases (— MadNIS) * Make everything run on the GPU and

differentiable (vadJax - Heinrich et al. [2203.00057))

 |nteresting interplay between HEP and VIL
ng ! play W  Further foster collaboration between

— HEP simulations provide ~infinite data for ML theory, experiment, and ML community

— HEP requirements (precision, symmertries,...)
different than industry applications



https://arxiv.org/abs/2203.00057

Summary and Outlook

m- SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Anja Butter!2, Tilman Plehn!, Steffen Schumann?®, Simon Badger*, Sascha Caron®>®
Kyle Cranmer”-®, Francesco Armando Di Bello®, Etienne Dreyer!?, Stefano Forte!!,
Sanmay Ganguly'?, Dorival Goncalves'?, Eilam Gross'®, Theo Heimel’,
Gudrun Heinrich!4, Lukas Heinrich!®, Alexander Held!®, Stefan Hoche!”,
Jessica N. Howard '8, Philip Ilten'®, Joshua Isaacson!’, Timo JanRen?, Stephen Jones??,
Marumi Kado®?!, Michael Kagan??, Gregor Kasieczka??, Felix Kling?4, Sabine Kraml?®,

Claudius Krause?®, Frank Krauss??, Kevin Kroninger?’, Rahool Kumar Barman!3,
Michel Luchmann!, Vitaly Magerya'4, Daniel Maitre??, Bogdan Malaescu?,
Fabio Maltoni?®2?, Till Martini®®, Olivier Mattelaer?®, Benjamin Nachman3!:32,
Sebastian Pitz!, Juan Roj06’33 , Matthew Schwartz**, David Shih?*°, Frank Sie:gert?‘5 ,
Roy Stegeman!!, Bob Stienen®, Jesse Thaler*®, Rob Verheyen®’,

Daniel Whiteson'®, Ramon Winterhalder?®, and Jure Zupan'®

Abstract

First-principle simulations are at the heart of the high-energy physics research pro-
gram. They link the vast data output of multi-purpose detectors with fundamental the-
ory predictions and interpretation. This review illustrates a wide range of applications
of modern machine learning to event generation and simulation-based inference, includ-
ing conceptional developments driven by the specific requirements of particle physics.
New ideas and tools developed at the interface of particle physics and machine learning
will improve the speed and precision of forward simulations, handle the complexity of
collision data, and enhance inference as an inverse simulation problem.

Future tasks

* Full integration of ML-based simulations into
standard tools =+ MadGraph,....

* Make everything run on the GPU and
differentiable (vadJax - Heinrich et al. [2203.00057))

 Further foster collaboration between
theory, experiment, and ML community

 More detalls in our Snowmass report



https://arxiv.org/abs/2203.00057

