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Current set of anomaly detection methods come with specific assumptions
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2

Introduce new method with different assumption:

Examples:
• Comparison between data and simulation

• New physics appears as resonance

• Autoencoder operationally defines anomaly
factorization

[1709.01087, 1806.02350, 1807.06038]

[1805.02664, 1902.02634, 2009.02205]

[1808.08979, 1903.02032, 2010.05531]

[1708.02949, 1802.00008, 2002.12376]
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What is factorization?
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p(pT, y, 𝒪) ≈ ∑
i

fi pi(pT, y) pi(𝒪 |pT)
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Canonical example: jets

Ex :  𝒪 ,D2 D3,
[1507.03018]

Ni
[1609.07483]
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p(pT, 𝒪) = fS pS(pT) pS(𝒪) + fB pB(pT) pB(𝒪)

= ℳ(

Calculate the conditional expectation

Assume we have a distribution of the form

Monotonically related to , the optimal classifier!LS/B(𝒪)

LS/B(𝒪))

For , we get a random classifierfS = 0
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Define approximately factorized objects (e.g.~jets)            


The FORCE Method

6

- kinematics pT
- scale-/boost-invariant substructure 𝒪

pT𝔼

𝑝

𝑝Train a machine-learning model to predict                      

Classify anomalous objects via cutting on the 
model output

pT | ]𝒪 𝒪q

X

𝔼[[ | ]𝔼pT

𝒪from with the mean-squared error loss

pT

Find anomalies by predicting kinematics from substructure

Factorized Observables for Regressing Conditional Expectation
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1. Toy Gaussian Dataset

2. LHC Olympics R&D Dataset
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p T

Signal and Background Joint Distributions
Signal
Background

1 kinematic variable, 1 substructure variable

1 million draws from background model

  1 million draws from signal modelfS ⋅
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Gaussian Example

FORCE Method on Gaussian Example

Supervised (AUC = 0.76 ± 0.00)

fS = 0.5000 (AUC = 0.76 ± 0.00)

fS = 0.0500 (AUC = 0.75 ± 0.00)

fS = 0.0050 (AUC = 0.59 ± 0.09)

fS = 0.0005 (AUC = 0.50 ± 0.00)

fS = 0.0000 (AUC = 0.50 ± 0.00)

Random, AUC=0.5

Random classifier in low signal limit

• Fully connected network

• 3 layers of 100 nodes

• ReLU Activation

⟹

Optimal performance in high signal limit
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Since we constructed from Gaussians, 
can compute  analytically𝔼[pT |𝒪]

Find solid convergence in large signal 
limit, with decaying performance as 
signal fraction decreases
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LHC Olympics
R&D Dataset
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While hypothesis is resonance, FORCE doesn’t use resonance info

 Can combine FORCE with other bump hunting algorithms⟹

[2101.08320]

mZ′ 
= 3.5 TeV

mX = 500 GeV

mY = 100 GeV
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expansion in energy and angle

EFP →
EFP

(
M

∑
i=1

pT,i)
N−2d M

∑
i=1

M

∑
j=1

pT,ipT,jθij

d

Transverse boosts scale
Energy: γ
Angle: 1/γ

Introduce normalized EFPs ⟹

Degree Connected Multigraphs

d = 0

d = 1

d = 2

d = 3

Take EFPs   13 featuresd ≤ 3 ⟹

 independent observables13 → 8

[1712.07124]
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*More on that later*
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Optimal performance in high signal limit

Smooth decay of statistical power

Random classifier in low signal limit
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How does shuffling affect the bump hunt?
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Interrogate conditional expectation to recover 
 fS, ⟨pT⟩B, ⟨pT⟩S, and LS/B(𝒪)
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Generalize to more than 1 kinematic feature and 
more than 2 event categories

Make method more sensitive to small signal 
fractions 



Raymond Wynne - ML4Jets - 07 November 2023

Conclusion

18

pT𝔼

𝑝

𝑝
pT |

]
𝒪 𝒪q

X

𝔼[[ | ]𝔼 pT ]

Key Takeaways:



Raymond Wynne - ML4Jets - 07 November 2023

Conclusion

18

pT𝔼

𝑝

𝑝
pT |

]
𝒪 𝒪q

X

𝔼[[ | ]𝔼 pT ]

Key Takeaways:

Train ML model to predict kinematics from 
substructure   powerful classifier
⟹



Raymond Wynne - ML4Jets - 07 November 2023

Conclusion

18

pT𝔼

𝑝

𝑝
pT |

]
𝒪 𝒪q

X

𝔼[[ | ]𝔼 pT ]

Key Takeaways:

Train ML model to predict kinematics from 
substructure   powerful classifier
⟹

Shift discussion from specific models to 
factorized structure



Raymond Wynne - ML4Jets - 07 November 2023

Conclusion

18

pT𝔼

𝑝

𝑝
pT |

]
𝒪 𝒪q

X

𝔼[[ | ]𝔼 pT ]

Key Takeaways:

Train ML model to predict kinematics from 
substructure   powerful classifier
⟹

Shift discussion from specific models to 
factorized structure

Focused on jets, but works for any 
factorized objects
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Interrogating the Normalization
EFPs vs  Mutual InformationpT
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Bump Hunt w/ fS = 0
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