

Full Phase Space Resonant Anomaly Detection

Erik Buhmann, <u>Cedric Ewen*</u>, Gregor Kasieczka, Vinicius Mikuni, Benjamin Nachman, and David Shih

08/11/2023 - ML4Jets 2023

arxiv: 2310.06879

* cedric.ewen@studium.uni-hamburg.de

Motivation

- Existence of physics beyond the standard model is likely
- Too many models for dedicated searches
- Need for data-driven model-independent searches
- Anomaly detection with ML

Resonant Anomaly detection:

- Feature m with smooth background
- Signal localized in m
- Use feature set x to enhance anomaly
- Choice of feature set x is difficult
- Previous enhancement to use more features
- ➤ We want to use all available features

CATHODE

- Goal: Approximate likelihood-ratio ρ_{sig+bg}/ρ_{bg}
- Train conditioned generative model on SB background
- Interpolate into SR and sample background-like events
- Compare generated background and data with a classifier

Hallin et al.; Classifying Anomalies THrough Outer Density Estimation (CATHODE); arxiv: 2109.00546

Dataset

- LHC Olympics 2020 challenge R&D dataset
- Background: QCD
- Signal: $W' \to XY$ with $X \to qq, Y \to qq$
- $m_W = 3.5 \text{ TeV}, m_X = 500 \text{ GeV}, m_Y = 200 \text{ GeV}$
- Resonant feature: dijet mass m_{jj}
- SR: 3300 GeV 3700 GeV
- SB: 2300 GeV 3300 GeV and 3700 GeV 5000 GeV
- Two leading p_T jets selected
- Up to 279 constituents per jet with p_T , η , ϕ

https://lhco2020.github.io/homepage/

Full Phase Space Resonant Anomaly Detection

Original Cathode

 $m_{j1}, \Delta m, \tau_{21,j1}, \tau_{21,j2}$

4 features

Full Phase Space

2 jets * 279 constituents * 3 features

up to 1674 features

- Discriminative features need to be selected
- Features must contain the anomaly
- Simple ML task

- Weak supervision is difficult
- Jets represented as point clouds
 - Permutation invariant
 - Variable jet sizes
- Powerful networks needed

Normalizing Flow (MAF)	Generative Network	Diffusion / Flow Matching model with DeepSets/Transformer
MLP classifier	Classifier	Transformer Point Cloud classifier

Normalizing Flows

Normalizing Flow (NF)

Training:

 $\log p_T(x_T) = \log p_0(x_0) - \log \left| \frac{\partial f_t^{\theta}}{\partial x_t} \right|$ Sampling:

$$x_T = f_{T-1} \circ \cdots \circ f_0(x_0)$$

- *f* must be invertible
- Determinant computationally expensive
 - Restricted transformations needed

Rezende et al.; Variational Inference with Normalizing Flows; arxiv:1505.05770

Continuous Normalizing Flows

Normalizing Flow (NF)

Training:

$$\log p_T(x_T) = \log p_0(x_0) - \log \left| \frac{\partial f_t^{\theta}}{\partial x_t} \right|$$

Sampling:

$$x_T = f_{T-1} \circ \cdots \circ f_0(x_0)$$

- *f* must be invertible
- Determinant computationally expensive
 Restricted transformations needed

Continuous Normalizing Flow (CNF)

$$\log p_1(x_1) = \log p_0(x_0) - \int_{t_0}^t Tr\left(\frac{\partial v_\theta}{\partial x_t}\right) dt$$

Solve ODE (ordinary differential equation)

- *f* has no restrictions
- Trace is easier to calculate
- Still computationally expensive

Chen et al.; Neural Ordinary Differential Equations; arxiv:1806.07366

Flow Matching

Continuous Normalizing Flow (CNF)

Training:

Training is difficult because
 ODE needs to be solved

$$\frac{\partial x_t}{\partial t} = v_\theta(x_t, t)$$

 $\log p_1(x_1) = \log p_0(x_0) - \int_{t_0}^t Tr\left(\frac{\partial v_\theta}{\partial x_t}\right) dt$

 $L_{FM} = ||v_{\theta}(x_t) - u_t(x_t|x_0)||^2$

 $x_t = \gamma_t x_0 + \sigma_t \epsilon_{[2302.00482]}$

Flow Matching (FM)

Training:

- Simulation-free training objective (no ODE solving during training)
- Regressing against conditional flows
- Much faster training

Lipman et al.; Flow Matching for Generative Modeling; arxiv:2210.02747

Diffusion Models

- Adding noise to perturb data
- Description as stochastic differential equation (SDE)
- Sample by solving reverse SDE
- Train model by approximating score function with conditional probability paths

Forward SDE (data
$$\rightarrow$$
 noise)
 $\mathbf{x}(0)$ $\mathbf{dx} = \mathbf{f}(\mathbf{x}, t) dt + g(t) d\mathbf{w}$ $\mathbf{x}(T)$
 $\mathbf{x}(T)$
 $\mathbf{x}(0)$ $\mathbf{dx} = [\mathbf{f}(\mathbf{x}, t) - g^2(t) \nabla_{\mathbf{x}} \log p_t(\mathbf{x})] dt + g(t) d\bar{\mathbf{w}}$ $\mathbf{x}(T)$
Reverse SDE (noise \rightarrow data)

 $L = ||s_{\theta}(x_t) - \nabla_x \log p_t(x|x_0)||$

 $dx = \left[f(x,t) - \frac{1}{2}g(t)^2 \nabla_x \log p_t(x) \right] dt$

Probability flow ODE

Loss Function

Probability Flow ODE:

- Remove stochasticity
- SDE \rightarrow ODE
- ➤ A CNF describable with FM
- "Continuous Time Generative Models"

Song et al.; Score-Based Generative Modeling through Stochastic Differential Equations; arxiv:2011.13456

Architecture

Generation Pipeline:

- *m_{jj}*-model (KDE)
- Jet feature model
 - Conditioned on m_{jj}
- Particle feature model
 - Conditioned on jet features

Two approaches:

- Diffusion + Transformer [2304.01266]
- Flow Matching + MLP/ EPiC [2310.00049]
 - EPiC: DeepSets based

Classifier

- Point Cloud Classifier
- Input: Particle Features/ Jet Features
- DeepSets/ Transformer architecture
- Equivariant

Results Sideband (SB)

Classifier AUC: 0.54 (Diffusion) 0.53 (Flow Matching)

Cedric Ewen | Full Phase Space Resonant Anomaly Detection

Results Signal Region (SR)

Classifier AUC: 0.48 (Diffusion) 0.42 (Flow Matching)

Cedric Ewen | Full Phase Space Resonant Anomaly Detection

Results

- Classifier evaluated on SIC and ROC curve
- Both models perform similarly
- Generative models can fool the classifier
- Much higher significance can be achieved for large signal injections
- Idealized performance is saturated
- For low signal injections, CATHODE with handpicked features performs better

Conclusion

- Model-independent BSM search is important
- Hand-selected features might not contain anomaly
- We applied CATHODE to the full phase space using two state-of-the-art generative models
- Anomalies can successfully be identified
- Larger significance than before
- Currently only sensitive to large signal injections
- Future innovations might lower the signal injection threshold
- Paper on <u>arxiv:2310.06879</u>

Additional Slides

SIC / ROC Curve 2000 signal injection

Hyperparameters

Hyperparameter	Jet-Diffusion	Particle-Diffusion	Jet-FM	Particle-FM	Classifier
Explicit Conditioning	t,m_{jj}	$t, p_T, \eta, \phi, m, N, m_{jj}$	t,m_{jj}	$t,p_T,\eta,\phi,m,$	/
Time Embedding	Fourier [43]	Fourier $[43]$	$\operatorname{Sin}/\operatorname{Cos}$	Cosine $[58]$	/
Activation function	LeakyReLU (0.01) [59]	LeakyReLU(0.01) [59]	ELU [60]	LeakyReLU (0.01) [59]	LeakyReLU(0.01) [59]
Batch size	128	128	128	1024	128
Optimizer	Adam [61]	Adam [61]	AdamW [62]	AdamW [62]	Adam $[61]$
Initial learning rate	$1.6 imes 10{-3}$	$1.6 imes 10^{-3}$	10^{-3}	10^{-3}	10^{-3}
Weight decay	/	/	$5\cdot 10^{-5}$	$5\cdot 10^{-5}$	/
Learning rate scheduling	Cosine annealing $[47]$	Cosine annealing [47]	Constant	Cosine with warm-up	/
Warm-up epochs	/	/	/	500	/
Training epochs	300	300	10000	5000	300
Early stopping patience	50	50	100	/	50
Number of GPUs	16	16	1	1	16
Model weights	$\sim 1.3M$	$\sim 1.4M$	$\sim 380k$	$\sim 2M$	438k