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Motivation
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§ Existence of physics beyond the standard model is likely
§ Too many models for dedicated searches
ØNeed for data-driven model-independent searches
ØAnomaly detection with ML

Resonant Anomaly detection:
§ Feature 𝑚 with smooth background
§ Signal localized in 𝑚 
§ Use feature set 𝑥 to enhance anomaly

§ Choice of feature set 𝑥 is difficult
§ Previous enhancement to use more features
ØWe want to use all available features

[2109.00546]



CATHODE
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§ Goal: Approximate likelihood-ratio 𝜌!"#$%#/𝜌%# 

§ Train conditioned generative model on SB background

§ Interpolate into SR and sample background-like events

§ Compare generated background and data with a classifier
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Figure by Tobias QuadfaselHallin et al.; Classifying Anomalies THrough Outer Density 
Estimation (CATHODE); arxiv: 2109.00546



Dataset
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§ LHC Olympics 2020 challenge R&D dataset
§ Background: QCD
§ Signal: 𝑊& → 𝑋𝑌 with 𝑋 → 𝑞𝑞, 𝑌 → 𝑞𝑞
§ 𝑚' = 3.5 TeV, 𝑚( = 500GeV, 𝑚) = 200GeV
§ Resonant feature: dijet mass 𝑚**
§ SR: 3300 GeV - 3700GeV
§ SB: 2300 GeV - 3300GeV and 3700 GeV - 5000GeV 

§ Two leading 𝑝+ jets selected
§ Up to 279 constituents per jet with 𝑝+, 𝜂, 𝜙

𝑚!! [GeV]

https://lhco2020.github.io/homepage/

https://lhco2020.github.io/homepage/


Full Phase Space Resonant Anomaly Detection
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Original Cathode Full Phase Space

𝑚!", Δ𝑚, 𝜏#",!", 𝜏#",!#

4 features

§ Discriminative features need to be selected
§ Features must contain the anomaly

Ø Simple ML task

2 jets * 279 constituents * 3 features

up to 1674 features

Normalizing Flow (MAF) Generative Network Diffusion / Flow Matching model
with DeepSets/Transformer

MLP classifier Classifier Transformer Point Cloud classifier

§ Weak supervision is difficult
§ Jets represented as point clouds

§ Permutation invariant
§ Variable jet sizes

Ø Powerful networks needed



Normalizing Flows

𝑥%~𝑝%
𝑥&~𝑝&

𝑓%
'!(𝑥%) 𝑓"

'"(𝑥")

𝑥"

𝑓"#$
%!"#(𝑥"#$)

Normalizing Flow (NF)

Training:

Sampling:

log 𝑝! 𝑥! = log 𝑝" 𝑥" − log
𝜕𝑓#$

𝜕𝑥#

𝑥& = 𝑓&(" ∘ ⋯ ∘ 𝑓%(𝑥%)

§ 𝑓 must be invertible
§ Determinant computationally expensive

Ø Restricted transformations needed
Rezende et al.; Variational Inference with Normalizing Flows; arxiv:1505.05770
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Continuous Normalizing Flows

Normalizing Flow (NF)

Training:

Sampling:

§ 𝑓 must be invertible
§ Determinant computationally expensive

Ø Restricted transformations needed

𝑥%~𝑝%

𝑓%(𝑥%) 𝑓"(𝑥")

𝑥"

𝑓!%&(𝑥!%&)

log 𝑝! 𝑥! = log 𝑝" 𝑥" − log
𝜕𝑓#$

𝜕𝑥#

𝑥5 ≔ 𝑓 𝑥5 , 𝑡
𝜕𝑥5
𝜕𝑡

= 𝑣6(𝑥5 , 𝑡)

§ 𝑓 has no restrictions
§ Trace is easier to calculate
§ Still computationally expensive

𝑥"~𝑝"

𝑥& = 𝑓&(" ∘ ⋯ ∘ 𝑓%(𝑥%) Solve ODE (ordinary differential equation)

log 𝑝& 𝑥& = log 𝑝" 𝑥" −,
#&

#
𝑇𝑟

𝜕𝑣$
𝜕𝑥#

𝑑𝑡	

Continuous Normalizing Flow (CNF)

Chen et al.; Neural Ordinary Differential Equations; arxiv:1806.07366
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Flow Matching

Continuous Normalizing Flow (CNF) Flow Matching (FM)

𝐿,- = 𝑣. 𝑥/ − 𝑢/ 𝑥/ 𝑥0
1

Training:
§ Simulation-free training objective

(no ODE solving during training)
§ Regressing against conditional flows

Ø Much faster training

log 𝑝& 𝑥& = log 𝑝" 𝑥" −,
#&

#
𝑇𝑟

𝜕𝑣$
𝜕𝑥#

𝑑𝑡	

Training:
§ Training is difficult because 

ODE needs to be solved

𝑥) = 𝛾)𝑥% + 𝜎)𝜖

𝜕𝑥2
𝜕𝑡

= 𝑣3(𝑥2, 𝑡)

Lipman et al.; Flow Matching for Generative Modeling; arxiv:2210.02747

[1810.01367] [2302.00482]
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Diffusion Models
§ Adding noise to perturb data
§ Description as stochastic 

differential equation (SDE)
§ Sample by solving reverse SDE
§ Train model by approximating

score function with conditional 
probability paths

Probability Flow ODE:
§ Remove stochasticity
§ SDE → ODE
ØA CNF describable with FM

Probability flow ODE

𝑑𝑥 = 𝑓 𝑥, 𝑡 −
1
2
𝑔 𝑡 4∇5 log 𝑝2 𝑥 𝑑𝑡

𝐿 = ||𝑠3 𝑥2 − ∇5 log 𝑝2 𝑥|𝑥6 ||
Loss Function

“Continuous Time Generative Models”

Song et al.; Score-Based Generative Modeling through Stochastic 
Differential Equations; arxiv:2011.13456
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Architecture
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Flow Matching

Generation Pipeline:
§ 𝑚**-model (KDE)

§ Jet feature model
§ Conditioned on 𝑚**

§ Particle feature model
§ Conditioned on jet features

Two approaches:
§ Diffusion + Transformer [2304.01266]

§ Flow Matching + MLP/ EPiC [2310.00049]
§ EPiC: DeepSets based 

Diffusion

https://arxiv.org/abs/2304.01266
https://arxiv.org/abs/2310.00049


Classifier
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Jet inputs
((pT1, η1, ϕ1, m1, N1),
(pT2, η2, ϕ2, m2, N2))

Particle inputs
((pTrel1, ηrel1, ϕrel1),
((pTrel2, ηrel2, ϕrel2),. . .
((pTrelN, ηrelN, ϕrelN),
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§ DeepSets/ Transformer architecture
§ Equivariant

§ Point Cloud Classifier
§ Input: Particle Features/ Jet Features



Results Sideband (SB)
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§ Classifier AUC: 0.54 (Diffusion) 0.53 (Flow Matching)



Results Signal Region (SR)
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§ Classifier AUC: 0.48 (Diffusion) 0.42 (Flow Matching)



Results
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§ Classifier evaluated on SIC and ROC curve

§ Both models perform similarly

ØGenerative models can fool the classifier

ØMuch higher significance can be achieved for 
large signal injections

Ø Idealized performance is saturated

ØFor low signal injections, CATHODE with hand-
picked features performs better

𝑆𝐼𝐶 =
𝑇𝑃𝑅
𝐹𝑃𝑅



Conclusion
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§ Model-independent BSM search is important

§ Hand-selected features might not contain anomaly

§ We applied CATHODE to the full phase space 
using two state-of-the-art generative models

§ Anomalies can successfully be identified 

§ Larger significance than before

§ Currently only sensitive to large signal injections

§ Future innovations might lower the signal injection threshold

§ Paper on arxiv:2310.06879

https://arxiv.org/abs/2310.06897


Additional Slides
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SIC / ROC Curve 2000 signal injection
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Hyperparameters

08/11/2023 Cedric Ewen | Full Phase Space Resonant Anomaly Detection 18


