Pushing Normalizing Flows for higher-dimensional Detector Simulations

Florian Ernst, in collaboration with Luigi Favaro, Claudius Krause, Tilman Plehn and David Shih

ITP - Heidelberg University

florian.ernst@uni-heidelberg.de

November 6, 2023

Structure

2 Models

- INN
- VAE

3 Results

- Classifier results
- High level features

4 Backup Slides

Florian E	Irnst
Pushing	INNs

CaloChallenge 2022

twiki.cern.ch

Datasets

Three datasets of increasing dimensionality

INN

Generation with an INN

Models

Florian Ernst

Introduction 00	Models ○●○○	Results 00000 0000	Backup Slides
ININ			

Architecture

INN

Preprocessing

INN

Advantages and Disadvantages

Models

Advantages

- Very accurate generations
- Fast in both directions

Disadvantages

• Bad scaling (time and memory)

VAE

Compression with a VAE

Models

Florian Ernst

Derivation

- Assume \exists true joint distribution of data x and latent z.
- Minimize $D_{\mathsf{KL}}[E(z|x), D(z|x)]$.
- $\Rightarrow \mathcal{L} = -\sum_{x \in TS} \langle \log D(x|z) \rangle_{E(z|x)} + \beta \cdot D_{\mathsf{KL}} \left[E(z|x), p_{\mathsf{latent}}(z) \right]$

Preprocessing

Florian Ernst

VAE

Results

Architecture

Classifier results

Results

Florian Ernst

Introduction 00	Models	Results ○●○○○	Backup Slides
Classifier results			

Classifier — Dataset 1 (photons)

2305.16774

Classifier results

Classifier — Dataset 1 (pions)

2305.16774

Results

Florian Ernst Pushing IN<u>Ns</u>

Classifier — Dataset 2

2305.16774

Introduction 00	Models 0000 0000	Results 0000● 0000	Backup Slides
Classifier results			

Classifier — Dataset 3

2305.16774

Florian Ernst

High level features

High level features — Dataset 1

Results

Introduction Models Results Backup Slide: OC 0000 0000 00000 00000

High level features

High level features — Dataset 2 & 3

- Coupling blocks are a viable and faster possibility for normalizing flows
- VAE compression is possible but results in worse samples
- VAEs perform best for hadronic showers, while pure INNs perform best for electromagnetic showers.

High level features

The End

Florian Ernst

Backup Slides

Florian Ernst

Pushing INNs

ΤP

Parameter	INN ds1/ds2	INN (After VAE)
coupling blocks	RQS / Cubic	RQS
# layers	4 / 3	3
hidden dimension	256	32
# of bins	10	10
# of blocks	12/14	18
# of epochs	450 / 200	200
batch size	512 / 256	256
lr scheduler	"one cycle"	"one cycle"
max. Ir	$1 \cdot 10^{-4}$	$1\cdot 10^{-4}$
$\beta_{1,2}$ (ADAM)	(0.9, 0.999)	(0.9, 0.999)
Ь	$5 \cdot 10^{-6}$	/
α	$1 \cdot 10^{-8}$	$1\cdot 10^{-6}$

N			el	
0	0	0	0	
0	0	0	0	

Parameter	VAE	
lr scheduler	Constant LR)
lr	$1 \cdot 10^{-4}$	
hidden dimension	5000, 1000, 500 (Set 1)	
	1500, 1000, 500 (Set 2)	
	2000, 1000, 500 (Set 3)	
latent dimension	50 (Set 1,2) / 300 (Set 3)	Sinner VAE
# of epochs	1000	
batch size	256	
β	$1\cdot 10^{-9}$	
threshold <i>t</i> [keV]	2 (Set 1) / 15.15 (Set 2,3)	J
hidden dimension	1500, 800, 300)
kernel size	7	Kernel
kernel stride	3 (Set 2), 5 (Set 3)	J

Results

INN derivation

$$dx \ p_{\text{model}} (x \mid \theta) = dz \ p_{\text{latent}} (z)$$

$$\Leftrightarrow \quad p_{\text{model}} (x \mid \theta) = p_{\text{latent}} (z) \left| \frac{\partial G_{\theta}(z)}{\partial z} \right|^{-1} = p_{\text{latent}} \left(\bar{G}_{\theta}(x) \right) \left| \frac{\partial \bar{G}_{\theta}(x)}{\partial x} \right|.$$

$$\Rightarrow \quad \mathcal{L}_{\mathsf{INN}} = -\left\langle \log p_{\mathsf{model}}\left(x|\theta\right)\right\rangle_{p_{\mathsf{data}}\sim TS} \\ = -\left\langle \log p_{\mathsf{latent}}\left(\bar{G}_{\theta}(x)\right) + \log\left|\frac{\partial \bar{G}_{\theta}(x)}{\partial x}\right|\right\rangle_{p_{\mathsf{data}}\sim TS}.$$