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Self-supervision
● Self-supervision: model learns from the data itself. uses ‘pseudo-labels’ during training
● Control training such that the representation should have 

                            1) Invariance to certain transformations of the events/jets
                            2) The discriminative power to anomalies
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Anomaly detection, Self-supervision
Anomaly detection

● Model-agnostic: No assumption on signal
● Density based
● The ability process high dimensional dataset
● Trained on background samples
● Not invariant under phase-space transformation



Contrastive Learning Representation
Contrastive learning representation (CLR)

● CLR: pseudo-labels are used network optimization via contrastive loss function 
● Learns high-dimensional correlations in the data
● Learnt representations can be used for downstream tasks

● Positive-pair labels                    : each data point to an augmented version that does map to 
itself 

● Negative-pair                                                        : match each data point in the sample to 
every other that is not itself or an augmented/transformed version of itself 

● f (typically a transformer encoder): 
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The AnomalyCLR

● Modified contrastive learning for anomaly detection 
● Positive pairs (zj,zj’): physical augmentations, invariant
● Anomaly pairs (zj,zj*): anomaly augmentations
● AnomalyCLR: Anomaly augmentations

[anomalyCLR]
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(B. M. Dillon, L. Favaro, F. Feiden, TM, T. Plehn; arXiv:2301.04660)



The AnomalyCLR

[anomalyCLR]
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Anomaly augmentation

● Multiplicity
● Multiplicity shifts keeping total pT  and MET constant 
● pT  and MET shifts



(CMS anomaly detection data challenge, Govorkova et. al. 2107.02157)

Anomaly score: anomalyCLR
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DarkCLR

CLR represenation for semi-visible jets

Dataset
● Hidden-valley models
● 2 TeV heavy Z’ resonance
● Dark quarks:
● Hadronizes to dark pion and ρmeson
● The fraction of constituents escaping detector 

(Preliminary: B. M. Dillon, L. Favaro, TM, T. Plehn, J. Rüschkamp)

(Buss et. al.  arXiv:2202.00686)
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Anomaly augmentations
Invariance

● Rotation
● Translation
●  permutation of the constituents

Dropping probability
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Anomaly score
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(DVAE, INN Buss et. al.  arXiv:2202.00686; NAE, B. M. Dillon et. al. arXiv: 2206.14225)
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DarkCLR, LCT
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●  simple linear classifier test
● Take representations before the head
● Same ROC regardless of the embedding
● AUC of 0.83 (0.78, raw data) from the LCT test
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Summary and Outlook

● Self-supervision: Offers unique way to identify anomalous objects in data
● Model agnostic. 
● AnomalyCLR: Anomaly detection for events
● DarkCLR: CLR for semi-visible jet detection

                    1) Apply preprocessing via invariances to transformations
                    2) Downstream task: Anomaly detection
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Additional Slides



Transformer Encoder
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:Data point e.g. a event

: Augmented version of the augmented data point

: Positive pairs

: Negative pairs

Contrastive loss function

17



The representation
● Transformer: projects each object to a larger vector of the embedding dimension
● embeddings passed through the transformer, with a feed-forward network.
● Output transformer: (n× model dimension). n is number of objects in an event
● Output: sum over the n vectors, enforces the permutation invariance
● The output of this head network is what is passed to the loss function
● For AD: representation output of the transformer network

(For details of transformer: B. M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson and L. Vogel,  
SciPost Phys. 12(6), 188 (2022))
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CLR for anomaly detection

● Contrastive learning: Allows the function f to encode the nontrivial features of 
background data since it is optimized on background data.

● This means representation learnt by f only focuses on background features
● Anomalous data is not out-of-distribution
● In this form CLR will not achieve competitive performance in anomaly detection
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NAE Loss



Single headed self-attention mechanism



22



DarkCLR
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(Ting Chen, Simon Kornblith, M. Norouzi, G. Hinton,arXiv:2002.05709)CLR
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More on anomalyCLR
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AE trained with anomalyCLR

● Encoder with five feedforward layers with dimension: 256, 128, 64, 32, 16
● Bottleneck: 5
● Decoder: 16, 32, 64, 128, 256
● Batch size: 4096
● Epoch: 100
● Learning rate: 0.001
● Adam optimizer
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