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Introduction

® Fast and precise predictions of event kinematics from first principles are the basis
of every LHC analysis

® Two challenges:
Conceptual problems to overcome: e.g. dealing with loop diagrams with many scales
Technical problems: increased prescision comes with higher computational cost

e In this talk (and the corresponding paper) we focus on off-shell effects
Given the precision targets of the upcoming LHC runs, off-shell approximation is not
justified
High computational cost of exact calculation
Neural-network surrogates: trained once, evaluated in parallel on GPUs
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Off-shell vs on-shell effects

® For a proof of concept we are interested at the leading order in QCD dominated
by tt production and dileptonic decay

® Training datasets generated with hvg and bb4l containing 5 million events each

hvq data includes only approximate off-shell effects using finite top width
bb4l data includes full off-shell effects (including e.g non-resonant effects)
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Off-shell vs

on-shell effects
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Off-shell vs

on-shell effects
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Off-shell vs on-shell effects - Problems and Solutions

® hard to generate complicated phase space

solution: transform easy to calculate phase space to hard to calculate phase space
® no pairings between on-shell and off-shell events

solution: choose method based on distributions

® We tried different methods
Train a classifier for event reweighting
® no support in some regions of the phase space renders reweighting impossible
Flows4Flows

® problems due to inflexibility of INNs
® error amplification due to chaining of 2 INNs

Direct Diffusion
® single feedforward DNN, no need for invertibility
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Direct Diffusion

® We are using a setup called conditional flow matching (CFM)
[arXiv:2209.15571, arXiv:2210.02747, arXiv:2209.03003, arXiv:2305.10475v2]
define x(t = 1) = x; as a sample from the on-shell phase space
define x(t = 0) = xo as a sample from the off-shell phase space

t~U([0,1]) l

T ~ pot(20), 1 ~ Pon(1) = x(t|zmo) = (1 — t)ao + tay @
2
ﬁ = (U@ — (1‘1 — SL‘o)) 0

® For more details see talk by Sofia Palacios Schweizer (14:45, Main Auditorium)
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Direct Diffusion

e We are using a setup called conditional flow matching (CFM):
Encoding transformation from on- to off-shell events as a continuous time evolution

dx
pr v(x(t),t)

define x(t = 1) = x; as a sample from the on-shell phase space
define x(t = 0) = xp as a sample from the off-shell phase space
thus we get a time dependent probability density

poff(X) t—0
pix.t) = {pon(x) t—1
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® we adapt the linear trajectory between on- and off-shell events to be

t—0
x(t|xo) = (1 — t)xp + tx1 — {XO
X1 ™~ Pon t—1

® hence the conditional velocity field becomes

d
v(x(t|xo0), t|xo) = e [(1—t)x0+ txa] = —x0 + x1
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Direct Diffusion
e from Bayesian statistics: p(x, t) = [ dxo p(x, t|x0)Pdata(X0)

® making use of the continuity eq. to find unconditional v(x, t):

op(x, t) _ /dxo Mpdata(xo)

ot ot
=— / dxo Vi (v(x, t|xo)p(x, t|x0)) Pdata(x0)
= —Vx (P(X t)v(x, 1))

X t|X0) (X7t|XO)pdata(X0)
p(x; t)

we identify v(x,t) /d

11
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Direct Diffusion - Loss and Predictions

® the loss function used then is a simple MSE loss

Lorn = ([v(x, ) = v(x(t|x0), t[x0)]*)
= ([vo((1 = t)x0 + b, 1) = (1 = x0)*)

071):X0NpofF7X1 ~Pon

® predictions can be made by solving the ODE

1
= Xp = X1 7/ vg(x, t)dt
0
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Phase Space Preprocessing

® Reduction of phase space

Phase space of 6 final state particles with 4 momentum components each (24D)
Transformed into pr, 7, ¢, m with constant m (18D)

Aligning every event's coordinates to one ¢ (17D)

One py and one p, is fixed due to p'* = 0 (15D)

® Transformations:
1/3
pT — PT/

¢ — arctanh(¢/m)

e Standardization

13
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Direct Diffusion - Results
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Direct Diffusion - Results
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Reweighting

C( _ Poff,data (X)

x) =
Poff,data (X) + poff,model(x)

W(X): Poff,data(X) _ C(X)

poff,model(x) 1- C(X)

® use pfl instead of pp

16
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Reweighting - Results
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Conclusion

® |nteresting problem, because it cannot be solved by modifying the amplitude at a
give phase space point

® Instead, it requires a generative approach covering the complete off-shell phase
space

® The advantage of this method is that the generative network only needs to learn a
controlled deviation

® Small network with limited training effort can reproduce the target off-shell
kinematics at the 10% level or better with only 5 million events

e (lassifier reweighting improves its precision to the level of few percent even in
challenging kinematic distributions
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Outlook

e Upcoming paper: Kicking it Off(-shell) with Direct Di-fusion

Advancing to higher order processes

Include processes that change final state structure

Conditionalize training for different simulation parameters
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