
Off-Shell Processes from Generative Networks
Anja Butter1,3, Tomáš Ježo2, Michael Klasen2,
Mathias Kuschick2, Sofia Palacios Schweitzer1 and Tilman Plehn1

1 Institut für Theoretische Physik, Universität Heidelberg, Germany
2 Institut für Theoretische Physik, Universität Münster, Germany
3 LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France



Introduction

Off-shell vs on-shell effects

Direct Diffusion

Results
Direct Diffusion only
Direct Diffusion reweighted

Conclusion and Outlook

2



Introduction

• Fast and precise predictions of event kinematics from first principles are the basis
of every LHC analysis

• Two challenges:
• Conceptual problems to overcome: e.g. dealing with loop diagrams with many scales
• Technical problems: increased prescision comes with higher computational cost

• In this talk (and the corresponding paper) we focus on off-shell effects
• Given the precision targets of the upcoming LHC runs, off-shell approximation is not

justified
• High computational cost of exact calculation
• Neural-network surrogates: trained once, evaluated in parallel on GPUs
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Off-shell vs on-shell effects
• For a proof of concept we are interested at the leading order in QCD dominated

by tt̄ production and dileptonic decay

• Training datasets generated with hvq and bb4l containing 5 million events each
• hvq data includes only approximate off-shell effects using finite top width
• bb4l data includes full off-shell effects (including e.g non-resonant effects)
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Off-shell vs on-shell effects
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Off-shell vs on-shell effects
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Off-shell vs on-shell effects - Problems and Solutions
• hard to generate complicated phase space

• solution: transform easy to calculate phase space to hard to calculate phase space
• no pairings between on-shell and off-shell events

• solution: choose method based on distributions
• We tried different methods

• Train a classifier for event reweighting
• no support in some regions of the phase space renders reweighting impossible

• Flows4Flows
• problems due to inflexibility of INNs
• error amplification due to chaining of 2 INNs

• Direct Diffusion
• single feedforward DNN, no need for invertibility
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Direct Diffusion
• We are using a setup called conditional flow matching (CFM)

[arXiv:2209.15571, arXiv:2210.02747, arXiv:2209.03003, arXiv:2305.10475v2]
• define x(t = 1) = x1 as a sample from the on-shell phase space
• define x(t = 0) = x0 as a sample from the off-shell phase space

t ∼ U([0, 1])

x0 ∼ poff(x0), x1 ∼ pon(x1) x(t|x0) = (1− t)x0 + tx1 CFM

L =
(
vθ − (x1 − x0)

)2 vθ

• For more details see talk by Sofia Palacios Schweizer (14:45, Main Auditorium)
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Direct Diffusion
• We are using a setup called conditional flow matching (CFM):

• Encoding transformation from on- to off-shell events as a continuous time evolution

dx
dt = v(x(t), t)

• define x(t = 1) = x1 as a sample from the on-shell phase space
• define x(t = 0) = x0 as a sample from the off-shell phase space
• thus we get a time dependent probability density

p(x , t) →
{

poff(x) t → 0
pon(x) t → 1
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Direct Diffusion
• we adapt the linear trajectory between on- and off-shell events to be

x(t|x0) = (1 − t)x0 + tx1 →
{

x0 t → 0
x1 ∼ pon t → 1

• hence the conditional velocity field becomes

v(x(t|x0), t|x0) = d
dt [(1 − t)x0 + tx1] = −x0 + x1
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Direct Diffusion
• from Bayesian statistics: p(x , t) =

∫
dx0 p(x , t|x0)pdata(x0)

• making use of the continuity eq. to find unconditional v(x , t):

∂p(x , t)
∂t =

∫
dx0

∂p(x , t|x0)
∂t pdata(x0)

= −
∫

dx0 ∇x (v(x , t|x0)p(x , t|x0)) pdata(x0)

= −∇x (p(x , t)v(x , t))

we identify v(x , t) =
∫

dx0
v(x , t|x0)p(x , t|x0)pdata(x0)

p(x , t)
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Direct Diffusion - Loss and Predictions
• the loss function used then is a simple MSE loss

LCFM =
〈
[vθ(x , t) − v(x(t|x0), t|x0)]2

〉
=

〈
[vθ((1 − t)x0 + tx1, t) − (x1 − x0)]2

〉
t∼U(0,1),x0∼poff,x1∼pon

• predictions can be made by solving the ODE

d
dt x(t) = vθ(x(t), t)

⇒ x0 = x1 −
∫ 1

0
vθ(x , t)dt
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Phase Space Preprocessing

• Reduction of phase space
• Phase space of 6 final state particles with 4 momentum components each (24D)
• Transformed into pT , η, ϕ, m with constant m (18D)
• Aligning every event’s coordinates to one ϕ (17D)
• One px and one py is fixed due to ptot

T = 0 (15D)
• Transformations:

• pT → p1/3
T

• ϕ → arctanh(ϕ/π)
• Standardization
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Direct Diffusion - Results
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Direct Diffusion - Results
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Reweighting

C(x) = poff,data(x)
poff,data(x) + poff,model(x)

w(x) = poff,data(x)
poff,model(x) = C(x)

1 − C(x)

• use p−1
T instead of pT
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Reweighting - Results
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Conclusion
• Interesting problem, because it cannot be solved by modifying the amplitude at a

give phase space point
• Instead, it requires a generative approach covering the complete off-shell phase

space
• The advantage of this method is that the generative network only needs to learn a

controlled deviation
• Small network with limited training effort can reproduce the target off-shell

kinematics at the 10% level or better with only 5 million events
• Classifier reweighting improves its precision to the level of few percent even in

challenging kinematic distributions
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Outlook

• Upcoming paper: Kicking it Off(-shell) with Direct Di-fusion

• Advancing to higher order processes
• Include processes that change final state structure
• Conditionalize training for different simulation parameters
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